
ITS Open Source Process

https://ite-org.github.io/NTCIP-8008/latest/

AASHTO / ITE / NEMA

CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

Table of contents

4Front Matter

4

5Notices

7Acknowledgements

8Foreword

10Introduction

11General

11Scope

11References

12General Statements

13Glossary

17Overview

17Establishing the Project

19Process comments

20Procss Contributions

21Approve Releases

23Commenter Responsibilities

23Overview

24Submitting a Comment

26Contributor Responsibilities

26Overview

28Prerequisites

38What Happens Next?

38Keeping Branches Up to Date

39Merge Conflicts

41Setup

42Maintainer Responsibilities

42Overview

42Establish Repository

42Configure Project Settings

43Set Up Project Files

55Define Project Structure

55Issue Triage

61Reviewing Pull Requests

65Creating a Release

NTCIP 8008 Table of contents

- 2/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

67Building a Community

68Advanced Features

71WG Responsibilities

71Overview

71Project Approval

72Issue Prioritization

72Pull-Request Approval

73Approve Releases

74Contributor Covenant Code of Conduct

74Scope

74Enforcement

74Details

74Attribution

75Documentation Conventions

75Exceptions Allowed

75Development Environment

77Working with the Content

86Coding Conventions

86Python Coding Conventions

87Examples for Material for MkDocs

87Call-out Blocks

90Annotations

90Footnotes

91Abbreviations / Glossary

91Paragraph attributes

92Sortable tables

93Mermaid diagrams

94Additional features

94Search

95Comment System

95Fields for information from GitHub

NTCIP 8008 Table of contents

- 3/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

Front Matter

Working Group Draft

NTCIP 8008 v0.0.0-alpha.11

National Transportation Communications for ITS Protocol

ITS Open-Source Process

May 19, 2025

NTCIP 8008 Front Matter

- 4/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

Notices

Copyright

ITS Open-Source Process is licensed under the Creative Commons Attribution 4.0 International

(CC BY 4.0) by the American Association of State Highway and Transportation Officials

(AASHTO), the Institute of Transportation Engineers (ITE), and the National Electrical

Manufacturers Association (NEMA).

The CC BY 4.0 license requires that reusers give credit to AASHTO, ITE, and NEMA. It allows

reusers to distribute, remix, adapt, and build upon the material in any medium or format, even for

commercial purposes.

Content and Liability Disclaimer

The information in this publication was considered technically sound by the consensus of

persons engaged in the development and approval of the document at the time it was

developed. Consensus does not necessarily mean that there is unanimous agreement among

every person participating in the development of this document.

AASHTO, ITE, and NEMA standards and guideline publications, of which the document

contained herein is one, are developed through a voluntary consensus standards development

process. This process brings together volunteers and seeks out the views of persons who have

an interest in the topic covered by this publication. While AASHTO, ITE, and NEMA administer the

process and establish rules to promote fairness in the development of consensus, they do not

write the document and they do not independently test, evaluate, or verify the accuracy or

completeness of any information or the soundness of any judgments contained in their

standards and guideline publications.

AASHTO, ITE, and NEMA disclaim liability for any personal injury, property, or other damages of

any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or

indirectly resulting from the publication, use of, application, or reliance on this document.

AASHTO, ITE, and NEMA disclaim and make no guaranty or warranty, express or implied, as to

the accuracy or completeness of any information published herein, and disclaims and makes no

warranty that the information in this document will fulfill any of your particular purposes or

needs. AASHTO, ITE, and NEMA do not undertake to guarantee the performance of any

individual manufacturer or seller's products or services by virtue of this standard or guide.

NTCIP 8008 Notices

- 5/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

https://github.com/ite-org/NTCIP-8008
https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
https://transportation.org
https://www.ite.org
https://www.nema.org

In publishing and making this document available, AASHTO, ITE, and NEMA are not undertaking

to render professional or other services for or on behalf of any person or entity, nor are AASHTO,

ITE, and NEMA undertaking to perform any duty owed by any person or entity to someone else.

Anyone using this document should rely on his or her own independent judgment or, as

appropriate, seek the advice of a competent professional in determining the exercise of

reasonable care in any given circumstances. Information and other standards on the topic

covered by this publication may be available from other sources, which the user may wish to

consult for additional views or information not covered by this publication.

AASHTO, ITE, and NEMA have no power, nor do they undertake to police or enforce compliance

with the contents of this document. AASHTO, ITE, and NEMA do not certify, test, or inspect

products, designs, or installations for safety or health purposes. Any certification or other

statement of compliance with any health or safety-related information in this document shall not

be attributable to AASHTO, ITE, or NEMA and is solely the responsibility of the certifier or maker

of the statement.

Trademark Notice

NTCIP is a trademark of AASHTO / ITE / NEMA. All other marks mentioned in this project are the

trademarks of their respective owners.

March 20, 2025

NTCIP 8008 Trademark Notice

- 6/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

Acknowledgements

This document was prepared though an open-source standards development process with the

following active contributors:

Check out the full list of contributors here.

In addition, the following submitted comments during the process:

k-vaughn

The resultant document is maintained by the NTCIP Base Standards, Profiles and Protocols

(BSP2) Working Group (WG), a subdivision of the Joint Committee on the NTCIP. The Joint

Committee on the NTCIP is organized under a Memorandum of Understanding among the

American Association of State Highway and Transportation Officials (AASHTO), the Institute of

Transportation Engineers (ITE), and the National Electrical Manufacturers Association (NEMA).

The Joint Committee on the NTCIP consists of six representatives from each of the standards

development organizations (SDOs) and provides guidance for NTCIP development.

March 20, 2025

contributorscontributors 33

•

NTCIP 8008 Acknowledgements

- 7/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

https://github.com/ite-org/NTCIP-8008/graphs/contributors
https://github.com/ite-org/NTCIP-8008/graphs/contributors
https://github.com/ite-org/NTCIP-8008/graphs/contributors

Foreword

Overview

This document is an NTCIP Open-Source NTCIP Process, Control, and Information Management

document provided as Interim for Field Release (IFR).

Open-source documents are developed using the ITS Open-Source Process, as defined in NTCIP

IFR-8008. This process provides an open standards development process that accepts issues

reported by the community and resolved by peer-reviewed contributions from the community.

The open source process concludes with the resultant material being approved by the defined

approval process.

IFR documents are approved through a streamlined process focused on the technical experts of

the community (e.g., those participating in the open-source development process) rather than

through a formal ballot of industry managers.

NTCIP Process, Control, and Information Management documents define the practices and

policies used by the NTCIP Joint Committee and its working groups in developing and

maintaining NTCIP publications.

This document defines the process for developing projects for the ITS community using an

open-source environment (e.g., GitHub). The project can produce any type of product, such as a

guide, a technical specification, a test procedure (e.g., including code), etc.

The approval process for the resultant open-source product is based on the target level of

specification. For example, an IFR specification undergoes a less formal approval process than

a full standard.

Approvals

IFRs are peer reviewed within the open-source process with final approval by an associated WG

established by the NTCIP Joint Committee.

Approval information is provided within the online environment.

NTCIP 8008 Foreword

- 8/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

For more information about NTCIP standards, visit the NTCIP Web Site at www.ntcip.org.

User Comment Instructions

Comments can be submitted at any time. In preparation of this NTCIP standards publication,

input of users and other interested parties was sought and evaluated.

Comments on open-source projects can be submitted either on the discussions or issues tab of

the project.

Discussions can be initiated at any time and anyone in the community can respond, all within a

public environment. Responses to discussion comments are strictly informative and may not be

accurate. Discussion comments can lead to the submittal of issues that need to be resolved to

clarify the standard.

Issues can be submitted at any time. Issues are triaged by the project maintainer, who will

evaluate their merit, classify them (e.g., as a bug, documentation issue, ommission), and in most

cases respond to the submitter. Once ready, issues will be available for contributors to volunteer

to address. When a volunteer has a proposed solution, it can be submitted to the project and

approved in a relatively short period (when compared to the traditional standards approval

process). However, updates to the projects are still version controlled so that users can

reference a specific version of the project without fear of it changing.

Comments should use the templates provided on the website; otherwise they may be ignored.

History

For a history of the project, see the projects releases page.

March 20, 2025

NTCIP 8008 User Comment Instructions

- 9/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

https://www.ntcip.org
https://github.com/ite-org/NTCIP-8008/discussions
https://github.com/ite-org/NTCIP-8008/issues
https://github.com/ite-org/ITS-open-source/releases

Introduction

This site defines the ITS Open-Source Process as used by several projects within the ITS

standards community. The process follows general practices within the larger open-source

community; however, this document:

provides a step-by-step overview of the process, so that those unfamiliar with open-source processes can better understand the process and

become contributors,

formalizes the process (e.g., by clearly defining what are requirements), and

tailors the process (e.g., by defining the preferred tools to be used).

This document contains one normative annex.

The following keywords apply to this document: AASHTO, ITE, NEMA, NTCIP, open-source,

process.

This document uses only metric units.

October 30, 2024

•

•

•

NTCIP 8008 Introduction

- 10/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

Section 1 General

1.1 Scope

This document specifies the process used to produce open-source documents within the field of

Intelligent Transportation Systems (ITS).

The process follows general practices within the larger open-source community; however, this

document:

provides a step-by-step overview of the process, so that those unfamiliar with open-source processes can better understand the process and

become contributors,

formalizes the process (e.g., by clearly defining what are requirements), and

tailors the process (e.g., by defining the preferred tools to be used).

The process to approve the resultant product is defined elsewhere (e.g., NTCIP 8001).

The ITS Open-Source Process is based on the practices defined by open-sauced. However,

whereas open-sauced is written as an informative guide and describes how systems can work;

this document is written as a specification to define how the ITS Open-Source Process will work.

While still providing a discussion of the issues; it highlights the requirements and notable

options along the way by stating each in its own paragraph and boldfacing the keywords "shall"

and "may" to clearly designate requirements and options. The remaining text provides further

guidance and can include additional options that do not necessitate specific numbering.

We recognize that onboarding to a new project can be challenging, especially if you're new to

open source development. Be patient, and don't be discouraged by setbacks or mistakes. You'll

become more comfortable and confident in your contributions with persistence and practice.

1.2 References

The following documents are referenced by this document. At the time of publication, the

editions indicated were valid.

1.2.1 Normative References

Normative references contain provisions that, through reference in this text, constitute

provisions of this document. All standards are subject to revision, and parties to agreements

•

•

•

NTCIP 8008 General

- 11/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

https://github.com/open-sauced/intro/tree/main

based on this standard are encouraged to investigate the possibility of applying the most recent

editions of the standard listed.

ISO/IEC/IEEE 24765:2017: Systems and software engineering — Vocabulary, 2017

GitHub

MkDocs

Materials for MkDocs

ReqView

Python

1.2.2 Other References

Other references are included to provide a more complete understanding of this document and

its relationship to other documents.

1.2.2.1 Other Resources for Contributors

This document standardizes and tailors certain aspects of the information contained in open-

sauced; however, it is not a complete replacement of that material. If you wish to learn more

about open-source development, the following materials may be of interest:

What is open-source?

Why open-source?

The Secret Sauce

Types of Open-Source Contributions

Open Source Guides

Introduction to GitHub and Open Source Projects

1.2.2.2 Other Resources for Maintainers

If you wish to learn more about open-source maintenance, the following materials may be of

interest:

Understanding the Role of an Open Source Maintainer

How to Communicate and Collaborate Effectively

Building Community

Maintainer Power Ups

Building Your Team

The Power of Open Source Metrics

Contributor Ladder Template

Maintainer Community

1.3 General Statements

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

NTCIP 8008 Other References

- 12/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

https://standards.iso.org/ittf/PubliclyAvailableStandards/c071952_ISO_IEC_IEEE_24765_2017.zip
https://github.com/dashboard
https://www.mkdocs.org
https://squidfunk.github.io/mkdocs-material/
https://www.reqview.com
https://www.python.org/downloads/
https://opensauced.pizza/learn/intro-to-oss/what-is-open-source
https://opensauced.pizza/learn/intro-to-oss/why-open-source
https://opensauced.pizza/learn/intro-to-oss/the-secret-sauce
https://opensauced.pizza/learn/intro-to-oss/types-of-contributions
https://opensource.guide
https://www.digitalocean.com/community/tutorial_series/an-introduction-to-open-source
https://opensauced.pizza/learn/becoming-a-maintainer/intro
https://opensauced.pizza/learn/becoming-a-maintainer/communication-and-collaboration
https://opensauced.pizza/learn/becoming-a-maintainer/building-community
https://opensauced.pizza/learn/becoming-a-maintainer/maintainer-powerups
https://opensauced.pizza/learn/becoming-a-maintainer/your-team
https://opensauced.pizza/learn/becoming-a-maintainer/metrics-and-analytics
https://github.com/cncf/project-template/blob/main/CONTRIBUTOR_LADDER.md
https://maintainers.github.com/auth/signin

The remainder of this document is broken into the following chapters:

Commenting Process: Details the process of contributing to open-source projects and provides step-by-step processes for using the preferred

tools of the ITS open-source projects.

Contribution Process: Details the process of contributing to open-source projects and provides step-by-step processes for using the preferred

tools of the ITS open-source projects.

Maintenance Process: Details the rules that project maintainers are to follow when managing an ITS open-source project. This includes processes

for setting up new projects, managing issues and pull requests, maintaining quality, and coordinating with standard development organizations.

Approval Process: Defines the approval stages for ITS open-source projects and the processes required for approval for each stage and

subsequent tagging and publication of versions.1

Documentation Conventions: Annex B defines the preferred styles, processes, and tools for developing documentation for ITS open-source

projects, including projects that are 100% documentation (e.g., the ITS Open-Source Process project).

Code Conventions: Annex C defines the styles, processes, and tools for developing computer code for ITS open-source projects, including Python

and ASN.1.

Requirements Management: Defines preferred ways to use requirement management tools to produce content that can be easily integrated into

the ITS open-source pojects while providing clear traceability.

1.4 Glossary

For terms not defined here, English words are used in accordance with their definitions by the

merriam-webster online dictionary. Electrical and electronic terms not defined in this section or

in Webster's New Collegiate Dictionary are used in accordance with their definitions in ISO/IEC/

IEEE 24765:2017.

backlog: A backlog is a list of tasks that need to be completed within a project. Typically, these

are tasks that are not yet assigned to a developer and are waiting to be worked on. Sometimes,

these could be tasks that were open weeks or months ago and are still waiting to be worked on.

branch: A branch is a separate version of the code that's created for development purposes.

Branches allow contributors to experiment with changes without affecting the main codebase.

When changes are ready to be merged into the main codebase, they're typically submitted as a

pull request.

bug: A bug refers to an error, flaw, or defect in code that adversely affects the proper functioning

of the software. Open source projects often depend on contributions from the community to

identify and rectify these bugs.

clone: Cloning is the process used to copy an existing Git repository into a new local directory.

The git clone command will create a new local directory for the repository, copy all the

contents of the specified repository, create the remote tracked branches, and checkout an initial

branch locally. By default, Git clone will create a reference to the remote repository called origin.

•

•

•

•

•

•

•

NTCIP 8008 Glossary

- 13/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

https://www.merriam-webster.com

code freeze: A code freeze is a period of time where no new code is added to a project. It is

often used to prepare for a release and ensure that the code is stable and ready for production.

code review: A code review is when a maintainer or contributor will review the work of another

contributor. This is a great way to ensure that the code is high quality and meets the standards

of the project.

containerization: Containerization is a way of packaging and running applications. Instead of

installing an app directly on your computer, you put it in a container that includes everything it

needs to work. This container can then run on your computer alongside other containers. It's a

way to organize and run multiple applications on the same machine, making it easier for

developers to manage and scale their applications.

continuous integration (CI): Continuous integration (CI) is a development approach in which

developers regularly merge code into a shared repository. For each change, an automated build

and test process is run to detect errors as quickly as possible.

continuous deployment (CD): Continuous deployment (CD) is often associated with continuous

integration (CI) and refers to keeping your application deployable at any point or even

automatically releasing to production. CD means that every change which passes the

automated tests is deployed to production automatically.

contributor: A contributor is anyone who makes changes, additions, or suggestions to an open

source project. Contributors can be developers, designers, writers, testers, or anyone else who

helps to make the project better.

core member: A core member is a contributor who has been granted additional privileges or

responsibilities within an open source project. Core members are typically trusted contributors

who have demonstrated a deep understanding of the project and have made significant

contributions to its development.

docs: Docs is an abbreviation for "documentation". It primarily explains how to implement and

use a product or an open source project. It also provides information on how to contribute to the

project and expectations for contributors. Documentation is often written using Markdown, a

lightweight markup language.

fork: A fork is a copy of a repository. When you fork a repository, you create a new copy of the

codebase that you can modify and experiment with without affecting the original codebase.

NTCIP 8008 Glossary

- 14/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

https://www.markdownguide.org/

GitHub actions: GitHub Actions are a way to automate tasks within your software development

life cycle. GitHub Actions are event-driven, meaning that you can run a series of commands after

a specified event has occurred. Examples of GitHub Actions include running tests, deploying to

production, and sending notifications.

GitHub discussions: GitHub Discussions are a way to have conversations about your project

directly in GitHub. They are a great way to discuss ideas, ask questions, and share knowledge

with your community.

issue: An issue is a problem or bug that needs to be addressed in the code. Issues can be

created by anyone, and they're often used to keep track of bugs, feature requests, and other

tasks that need to be done.

linting: Linting is the process of running a program that will analyze code for potential errors. A

popular linting tool used frequently is ESLint. You can setup an action to run ESlint against each

pull request that comes in to check for potential errors before it makes it into production.

maintainer: A maintainer is a person or a group of people responsible for maintaining a specific

open source project. Maintainers are typically responsible for reviewing and accepting or

rejecting contributions from other contributors. They also have the authority to make final

decisions about the direction and scope of the project.

markdown: Markdown is a lightweight markup language commonly used for creating formatted

text documents. It is widely used for creating documentation and README files in software

development due to its simplicity and readability.

merge: Merging is the process of combining changes from one branch into another. When a pull

request is accepted and merged, the changes made in the pull request become part of the main

codebase.

onboarding: Onboarding documentation helps new team members or collaborators quickly

become familiar with a project's structure, goals, and processes.

OSS Projects: OSS stands for "Open Source Software" projects. These are software projects

where the source code is made available to the public, allowing anyone to view, use and modify

the software.

pull request: A pull request is a request from a contributor to a maintainer for changes made to

the code to be pulled into a codebase.

NTCIP 8008 Glossary

- 15/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

quality assurance: Quality assurance in open source projects involves testing, reviewing, and

ensuring the software meets the desired standards. Community members often contribute to

testing and reporting issues to improve the software's quality.

release candidate: A release candidate is a beta version of software with the potential to be a

final product. It is typically the last version before the final release.

release notes: Release notes are documents that detail changes, enhancements, bug fixes, and

new features in each software release. They inform users and stakeholders about what to

expect in a new version of the software.

repository: A repository is a central location where code is stored and managed. In open source,

repositories are often hosted on platforms like GitHub, GitLab, or Bitbucket. Each repository can

contain one or more projects, and contributors can submit changes to the code by making pull

requests.

style guide: A style guide is a set of rules and conventions that define the preferred formatting,

writing style, and visual elements used in documentation and other content. This helps maintain

consistency and clarity across documents, making them easier to read and understand.

versioning: Versioning is the process of assigning either unique version names or numbers to

new releases of your project. Some versions are released as "major" versions, while others are

released as "minor" versions.

TODO: Move the approval process to NTCIP 8001

May 19, 2025

1.

NTCIP 8008 Glossary

- 16/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

Section 2 Overview

Managing an open-source project involves four major activities as described in the following

clauses:

Establishing the project

Processing comments

Processing contributions

Approving releases

2.1 Establishing the Project

Figure 1 provides an overview of the process to establish a new open-source project.

When someone identifies a need for a new shared resource (e.g., industry standard, reusable

code, etc.) within ITS, they can develop a proposal and submit it to an appropriate committee.

The proposal can be relatively simple (e.g., a statement of goals and structure) or a complete

prototype.

If the proposal is accepted by the committee, the committee will assign a working group and

one or more maintainers who will become responsible for leading the project. This will often

include the individual proposing the project. The maintainer will establish the open-source

project repository on the standards development organization's open-source website (e.g.,

GitHub account) and upload the initial project files.

1.

2.

3.

4.

%%{init: { 'sequence': { 'mirrorActors': false } }}%%
sequenceDiagram
 participant Proposer
 participant Committee
 participant WG as Working Group
 participant Maintainer
 participant Repo as Open-Source Project Repository

 Proposer ->> Committee: Propose project
 Committee ->> WG: Establish WG
 Committee ->> Maintainer: Assign maintainer
 Maintainer ->> Repo: Establish public repository
 Maintainer ->> Repo: Upload initial baseline
 Maintainer ->> WG: Suggest project plan
 WG -->> Maintainer: feedback
 Maintainer ->> Repo: Post project plan
 Maintainer ->> Repo: Create appropriate branches for work

NTCIP 8008 Overview

- 17/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

The maintainer is a key role in the project. If the maintainer is not available for any reason,

it can delay the triage of identified issues. It is the responsibility of the committee to

ensure that the maintainer either has sufficient resources or has sufficient backup to

provide a high degree of confidence that there is not an articicial bottleneck when

contributors wish to address problems.

Once the initial upload is provided, the maintainer will work with the working group to refine the

vision for the project and establish the set of baseline issues as a part of the project plan. The

project plan will also define the planned release schedule, which can be based on a calendar

schedule, reaching milestones, or achieving other metrics. Members of the WG are encouraged

to submit their issues directly so that the originator can be properly captured and to encourage

WG members to become familiar with the process; however, the Maintainer can submit

comments on the behalf of others, if needed.

The Maintainer is also responsible for creating any necessary branches for developing draft

materials. The "main" branch should always be restricted to formal releases. Working drafts and

pre-releases should be contained within branches so that industry users do not accidentally look

at a draft thinking that it is approved.

Needs Review

Note

NTCIP 8008 Establishing the Project

- 18/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

We need to review this process with a GitHub expert to determine the best way for

managaing the website (and PDF) rendered versions of the current release alongside drafts.

In other words, deployments need ready access to the current version (and all previous

versions) while WG members need access to the current draft. By default GitHub only allows

one rendered version but we could:

Use separate repositories (e.g., NTCIP-8008 and NTCIP-8008-future)

Use subdirectories (e.g., docs for current and docs/future for draft)

Use a GitHub action to publish different branches to different subdirectories of the gh-pages branch

Use a GitHub action to publish different branches to different repositories, one for each published/draft branch

All projects should likely use the same mechanism and the selection should be made in

consultation with GitHub experts.

2.2 Process comments

Figure 2 provides an overview of how comments are processed for an open-source project.

Users of open-source projects often have questions, encounter bugs, request features, or

provide feedback on usability. Submitting comments is the primary way for the community to

help guide the development of the project. Comments can be submitted at any time.

When comments are submitted, maintainers (and other followers) are notified. If the comment

is submitted as an issue (as opposed to a discussion item), the maintainer triages the issue by

determing its relevance, classification (e.g., bug, documentation issue), and priority. If needed,

the maintainer can discuss the issue with the commentor or sponsoring WG to ensure

consensus from the broader community.

Needs Review

•

•

•

•

%%{init: { 'sequence': { 'mirrorActors': false } }}%%
sequenceDiagram
 participant Commenter
 participant WG as Working Group
 participant Maintainer
 participant Repo as Open-Source Project Repository

 Proposer ->> Repo: Review materials
 Proposer ->> Repo: Submit comment
 Repo -->> Maintainer: Notify
 Maintainer ->> WG: Seek guidance
 WG -->> Maintainer: Provide feedback
 Maintainer ->> Repo: Perform triage

NTCIP 8008 Process comments

- 19/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

Each project should identify its goals for triaging submitted issues. By default, projects

should have a goal of triaging all comments within one month of their submittal, but the exact

timeline might vary based on available resources, the criticality of the project, and other

factors. If a submitted issue is not triaged within this timeline, the submitter should contact

the parent standards development organization for guidance.

As a result of the review, the issue can be accepted, merged with another issue, split into

multiple issues, or rejected (e.g., if it does not fit with the project's goals). Once the triage is

complete, the maintainer adds tags as appropriate to the issue so that it can properly be

managed.

2.3 Procss Contributions

Figure 3 provides an overview of processing contributions to an open-source project.

Open-source projects encourage contributions from the community, allowing others to solve

issues or implement features. Contributors gain experience and recognition, while the project

benefits from a broader range of solutions.

Interested contributors browse the list of open issues, claim one they are interested in, and start

working on a solution. When they have develped and tested their proposed solution, they submit

a request for the maintainer to "pull" a copy of their changes from their site. This is known as a

pull request (PR).

Needs Review

%%{init: { 'sequence': { 'mirrorActors': false } }}%%
sequenceDiagram
 participant WG as Working Group
 participant Maintainer
 participant Contributor
 participant Repo as Open-Source Project Repository

 Contributor ->> Repo: Review open issues
 Contributor ->> Repo: Claim issue
 Repo -->> Maintainer: Notify
 Contributor ->> Repo: Create copy
 Repo -->> Copy: Copy
 Contributor ->> Copy: Make edits
 Contributor ->> Repo: Submit pull request
 Repo -->> Maintainer: Notify
 Maintainer ->> Copy: Review
 Maintainer ->> WG: Optionally coordinate
 WG -->> Maintainer: Feedback
 alt if acceptable
 Maintainer ->> Copy: Merge
 Copy -->> Repo: Merge
 end

NTCIP 8008 Procss Contributions

- 20/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

When a PR is submitted, the maintainer is automatically notified and is responsible for reviewing

the request to ensure that it:

can be safely merged with the project without overwriting other changes,

solves the stated problem without introducing bugs, and

meets the project's guidelines (e.g., coding standards).

During the review process, the maintainer can communicate with the contributor if questions

arise or with the WG to ensure consensus on the details of the proposed change. If the process

identifies any issues with the proposed change, it can be returned to the contributor to make

additional revisions. If the changes are deemed to be satisfactory, the maintainer can accept the

pull request and the changes will be merged into the open-source project.

2.4 Approve Releases

Figure 4 provides an overview of the process to approve a new release of an open-source

project.

Releasing a project allows users to access a stable, tested version with new features, bug fixes,

or improvements. It also provides a versioned snapshot that is easier to manage and distribute.

Once all expected changes have been made to fulfil a defined stage in the project plan, the

maintainer will follow the project's defined process for obtaining approval of the current draft as

a formal release (e.g., v01.01.03) from the identified approval group (e.g., perhaps selected

experts for a patch, the WG for a new feature, or the parent committee for non-backwards

compatible changes). The exact approval group is defined in the project's plan.

If approval is received, the maintainer:

documents changes in release notes (if not already included);

if it is a full release, moves the version to the main branch;

tags the current version as a new release (e.g., "v01.01.03"); and

provides a downloadable archive.

•

•

•

%%{init: { 'sequence': { 'mirrorActors': false } }}%%
sequenceDiagram
 participant AG as Approval Group
 participant Maintainer
 participant Repo as Open-Source Project Repository

 Maintainer ->> AG: Suggest release (suggested release number)
 AG ->> Repo: Review materials
 AG -->> AG: Vote
 AG -->> Maintainer: Report results
 alt if approved
 Maintainer ->> Repo: Tag as identified release number
 else
 Maintainer ->> Repo: Address identified issues
 end

•

•

•

•

NTCIP 8008 Approve Releases

- 21/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

If approval is not received, the maintainer ensures that all of the identified issues are properly

recorded on the issues page and continues the process of addressing issues through

contributions.

This collaborative process allows open-source projects to evolve through contributions from

users and developers worldwide, promoting continuous improvement while ensuring

transparency and accountability.

May 19, 2025

NTCIP 8008 Approve Releases

- 22/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

Section 3 Commenter Responsibilities

3.1 Overview

3.1.1 General

Comments on projects using the ITS Open-Source Process are always welcome, no matter how

seemingly major or minor. Comments are key to improving products. The ITS Open-Source

Process is designed to facilitate and encourage users to submit comments and is therefore kept

simple.

Within the ITS Open-Source Process, comments can be submitted in either the discussions or

issues tab of the project repository.

3.1.2 Discussions

The discussions tab provides an open forum where interested parties can discuss ideas, ask

and answer questions, and formulate ideas. The discussions tab does not directly propose any

change to the project but can often nurture ideas that ultimately result in refining the overall

vision of the project, identify problems or ambiguities in the project contents, develop consensus

on project priorities, etc.

Discussions can be started by anyone at any time. Discussions can result in refining the concept

of one or more issues before submitting formally submitting them as issues.

3.1.3 Issues

Every project should follow a plan. Within the ITS Open-Source Process, the plan is documented

by defining issues that are to be addressed, preferrably according to assigned priorities.

The issues tab provides an open forum where any interested party can propose specific issues

that need to be addressed by project contributors. The issues can be anything from a missing

comma to requesting an entirely new feature. All proposed changes to a project are supposed to

be initiated by submitting an issue.

When an issue is submitted, the project maintainer is responsible for triaging the issue. Triaging

includes reviewing the issue, determining if the issue fits within the project plan, potentially

parsing or merging the issue to create easily managable tasks, assigning appropriate priority

and tags (e.g., bug, ambiguity, editorial) to the issue, and gaining consensus on the approach.

NTCIP 8008 Commenter Responsibilities

- 23/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

This process can involve working with others on the project team to ensure consensus on the

decisions being made.

Once an issue has been reviewed and accepted, anyone can claim ownership of the issue and

begin resolving it. Given the complexities of version control when there are potentially multiple

contributors, it is wise to separate issues into distinct bite-sized tasks that can be addressed

with a reasonably short turn-around.

3.2 Submitting a Comment

3.2.1 Read the README file

Before commenting, commenters should be familiar with the project as documented in the

README file.

3.2.2 Respect the CODE_OF_CONDUCT

When commenting, commenters shall respect the rules within the CODE_OF_CONDUCT file.

3.2.3 Use discussions if no change is proposed

For comments that do not actively propose a specific change to the project, the commenter

shall initiate a discussion using the project's discussion template.

3.2.4 Use issues to propose changes

For comments that actively propose a specific change to the project, the commenter shall

submit an issue using the project's appropriate issue template (e.g., bug fix, documentation

improvement, new feature)

3.2.5 Comply with templates

The commenter shall comply with all instructions on the selected commenting template without

deleting any fields.

Includion of all fields facilitates processing of the comment and prevents automatic rejection.

If a section of the template is not applicable, either explain why it is not needed or write "N/A".

Note

NTCIP 8008 Submitting a Comment

- 24/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

The specific templates offered can vary from project to project, but the templates often

include the following fields:

Title: A short descriptive phrase to allow readers to quickly assess the comment

Description: The details of the comment, especially those not captured in other fields of the tempalte. If you wish to work on the issue that you are

submitting, you should indicate this in the description. However, you should not start this work until the issue has been triaged to ensure it fits with

the overall project plan. When reporting a bug, the description needs to be sufficiently detailed so that the reader can reproduce the anomaly.

May 19, 2025

Tip

•

•

NTCIP 8008 Comply with templates

- 25/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

Section 4 Contributor Responsibilities

4.1 Overview

Contributions on projects using the ITS Open Source Process are always welcome, no matter

how large or small. However, before contributing, it's important to familiarize yourself with the

following resources of the project:

Some of this information is standardized in this document, but specific projects can extend or

make exceptions to the process and will always have their own project-specific goals.

Contributors are responsible for being familiar with the information contained in the following

project files, as stored in the project's root directory:

README.md: Provides an overview of the specific project,

CODE_OF_CONDUCT.md: Identifies the code of conduct for the project, and

CONTRIBUTING.md: Identifies project-specific rules for contributing.

LICENSE.md: Identifies the license agreement for project files

We need to make sure that our standard license addresses all concerns. To date, it sounds as

if CC-BY is a reasonable approach for documentation and BSD 3 clause is acceptable for

code. MIBs probably need a custom license that falls in between these two and restricts the

types of changes and use.

For projects following the ITS Open-Source Process, the last two files will typically only identify

exceptions or extensions to the rules defined by this document.

The overall process for contributing to an ITS open-source project is shown in Figure 4-1 and

described in the remainder of this section.

•

•

•

•

Needs Review

NTCIP 8008 Contributor Responsibilities

- 26/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

NTCIP 8008 Overview

- 27/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

4.2 Prerequisites

4.2.1 Join the relevant working group

Those wishing to contribute should join the relevant working group.

Most projects using the ITS Open-Source Process are led by working groups (WGs) within

standards development organizations (SDOs). The lead WG and SDO is typically identified

within the README file in the root directory of the project repository. Contributors are strongly

encouraged to join the corresponding working group to promote better communication

among community members and to develop a common vision for the project.

The ITS Open-Source Process project is led by the Base Standards and Profiles 2 (BSP2) WG

of the National Transportation Communications Interface Protocols (NTCIP) Joint Committee

(JC).

Note

Example

NTCIP 8008 Prerequisites

- 28/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

Within the NTCIP, any interested party can send an email to ntcip@nema.org. The email

should indicate (1) the working group of interest, (2) the stakeholder sector (e.g.,

infrastructure owner operator, other government, consultant, device manufacturer,

management station developer, etc.), (3) contact information, and (4) a short biography.

4.2.2 Install Software

4.2.2.1 Git

Those wishing to contribute shall install Git on their local computer.

4.2.2.2 Graphical User Interface

Those wishing to contribute may install a graphical user interface (GUI) for Git on their local

computer.

4.2.2.3 Development Environment

Those wishing to contribute shall install the development environment on their local computer.

Git is available for all major development platforms, including Windows, Mac OS, and Linux.

Git allows proper version control among multiple contributors. Git can be downloaded from

https://git-scm.com/downloads.

Git natively uses a command line interface (CLI), which can be difficult for beginners. There

are a variety of graphical user interfaces (GUIs) that are available to assist with interfacing

with Git.

Example GUIs for beginners include:

GitHub Desktop: Very beginner level with minimal user interface

SourceTree: Beginner-friendly with support for advanced Git functionality

GitKraken: Beginner-friendly with advanced options and modern UI with useful video clips to explain how to perform tasks.

NTCIP Guidance

Note

Example

•

•

•

NTCIP 8008 Install Software

- 29/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

mailto:ntcip@nema.org
https://git-scm.com/downloads
https://desktop.github.com/download/
https://www.sourcetreeapp.com
https://www.gitkraken.com/git-client

While contributors are allowed to use the CLI or any GUI of their preference, this document

references GitKraken videos due to(1) the user-friendly design of GitKraken, (2) the high-

quality help (including videos) available for GitKraken.

4.2.3 Establish an Account on the Repository Hosting Platform

Those wishing to contribute shall fork the repository to their own account.

All edits are originate within the contributor's account and all contributions can be traced

back to the contributor.

Create an account on GitHub. This requires a valid email address but is free for open-source

work.

4.2.4 Fork the repository

Those wishing to contribute shall fork the repository to their own account.

The main repository is shared by the entire open-source community on GitHub. Individual

contributors are not allowed to directly edit this file as that would create a chaotic

environment. Forking a repository creates a copy of the repository on the repository hosting

platform within the contributor's account. The contributor can then edit the copied repository

(as described below). The contributor's repository will inherit the visibility of the project being

forked (i.e., for open-source projects, it will be public). This allows the open-source

community to review the proposed changes prior to accepting their incorporation into the

community repository.

NTCIP Guidance

Note

NTCIP Guidance

Note

NTCIP 8008 Establish an Account on the Repository Hosting Platform

- 30/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

https://github.com
https://docs.github.com/en/get-started/quickstart/fork-a-repo#forking-a-repository
https://docs.github.com/en/get-started/quickstart/fork-a-repo#forking-a-repository

Press the "Fork" button in the upper-right portion of the shared repository's home page (e.g.,

https://github.com/<account>/<project>). For complate details, see the Fork a Repository

article on GitHub help.

Each project has a LICENSE.md file that defines its copyright. Projects are encuraged to use

CC-BY for documents, BSD 3-clause for code, and the NTCIP MIB copyright for MIBs.

4.2.5 Clone the repository

The contributor shall clone (i.e., copy an instance of) the forked repository to the local machine

where edits are to be made.

While a fork creates a copy on the host platform (which can be viewed by others), cloning

your forked repository creates a copy of your forked repository on a local machine. This

allows the contributor to edit files on a local machine rather than directly in the online

environment.

GitKraken Guidance

4.2.6 Claim an Issue

Before starting on any changes to the project, a contributor shall claim an associated issue.

A contributor shall not claim an issue that has the label "triage".

A new contributor to a project may claim an issue tagged as good first issue, or beginners only.

Experienced contributors shall not claim issues tagged with the label "beginners only".

Experienced contributors should avoid issues tagged with the label "good first issue".

Github Guidance

Note

Note

GitKraken Guidance

•

NTCIP 8008 Clone the repository

- 31/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

https://github.com/%3Caccount%3E/%3Cproject%3E
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/fork-a-repo
https://docs.github.com/en/repositories/creating-and-managing-repositories/cloning-a-repository#cloning-a-repository
https://docs.github.com/en/repositories/creating-and-managing-repositories/cloning-a-repository#cloning-a-repository
https://docs.github.com/en/repositories/creating-and-managing-repositories/cloning-a-repository#cloning-a-repository
https://help.gitkraken.com/gitkraken-desktop/open-clone-init/#cloning-an-existing-project
https://github.com/open-sauced/intro/issues?q=is-3Aissue+is-3Aopen+label-3A-22good+first+issue-22
https://github.com/open-sauced/intro/issues?q=is-3Aissue+is-3Aopen+label-3A-22good+first+issue-22
https://github.com/open-sauced/intro/issues?q=is-3Aissue+is-3Aopen+label-3A-22beginners+only-22

Taking ownership of an issue:

Notifies maintainers that work is starting to address the issue,

Allows efficient communication by allowing the maintainers and contributor to discuss the issue and proposed changes early in the update cycle,

Provides a historical record of the steps taken to address the issue,

Helps to block inappropriate pull requests as any pull request without an associated issue can be easily rejected.

When you're new to a project, it's a good idea to start with small, manageable tasks, fixing

bugs, adding tests, or updating documentation. These will often be tagged with the text "good

first issue" or "beginners-only". This will help you become familiar with the material and

development workflow without getting overwhelmed. The goal is to reserve at least some of

these issues for new contributors or until the end of the project; if everyone solves these

problems first, it makes it more challenging for contributors to gain experience.

If an issue is not assigned and it is not labeled with "triage", it is generally assumed to be

available for anyone to work on. Take control of the issue by submitting a comment of .take

on the selected issue). When an issue is assigned, it will be indicated under the "Assignees"

section of the issue.

Projects can implement additional rules regarding the assignment of issues. Always review

the project's contributing guidelines to ensure you are aware of any variations from this

standard process.

Note

•

•

•

•

GitHub Guidance

Note

NTCIP 8008 Claim an Issue

- 32/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

If you get stuck while working on your changes or need other clarification, you can always ask

for help using the discussions tab of the project. For example, you can get help for the ITS

Open-Source Process project at the Discussion Tab.

4.2.7 Create a Branch

Prior to starting work on a claimed issue, the contributor shall create a separate branch for all

edits related to that singlular issue.

Creating a separate branch facilitates tracking of changes and allows easier roll-backs of the

project to known states.

4.2.8 Make Edits

Once the contributor has claimed an issue and has a branch devoted to the development of that

issue, the contributor shall make changes in the local branch according to project guidelines.

Annex B, C, and D provide preferred guidelines that can be referenced for different types of

contributions.

If you have questions or concerns during the process (especially between meetings of the

corresponding WG), you can use the Discussions tab associated with the project. These

forums can be very useful in knowledge sharing and forming consensus, however, users

should be aware that the discussions tab does not represent official decisions of the WG.

Tip

Note

Note

NTCIP 8008 Create a Branch

- 33/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

https://github.com/ite-org/intro/discussions

Avoid addressing any other issues as this (1) makes the change larger and delays completion

of your primary task, (2) can overlap with changes being made by others, and (3) complicates

version control by not clearly documenting when specific changes were made. However, in

some cases, it may be appropriate to address multiple small and similar issues at once. For

example, multiple grammar issues in documentation can be grouped into a single pull

request.

4.2.9 Pull and Merge Updates

Prior to submitting a PR, the contributor shall pull the latest updates incorporated into the

shared project and merge these updates into the contributor's working branch.

Because multiple contributors can be working on the same project simultaneously, care must

be taken to ensure that each contributor has the latest version of files prior to proposing their

changes to be incorporated into the shared repository. This is done by first pulling any

changes from the shared repository into the contributor's forked version and then pulling

those changes down into the contributor's local branch. During this process, the Git

environment will highlight any conflicts (e.g., if the contributor and someone else changed the

same line of the same file). When this occurs, the contributor will need to resolve each

conflict prior to finalizing the merge.

Tip

Note

NTCIP 8008 Pull and Merge Updates

- 34/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

To update your local copy, first update your forked (origin) repository:

Go to your forked repository on GitHub. Click the "Sync fork" button. Click the green "Update

branch" button.

Next, pull the latest changes in the main branch in the origin repository to update your local

working branch by following these steps in your terminal:

git checkout YOUR-BRANCH-NAME

git pull origin main

4.2.10 Test the Updates

After pulling and merging the latest updates but prior to submitting the PR, the contributor shall

install any necessary dependencies and test the changes to ensure that the changes provide the

intended operation without any new bugs.

It is critical that updates are tested prior to being incorporated into the final code (this

includes ensuring that documentation files render correctly). Specific projects can define their

own testing process and procedures. You can find the instructions on how to run a project

locally in the README file or in the contributing guidelines.

4.2.11 Commit the Update

Prior to pushing the proposed changes to online repository, the contributor shall commit the

changes in the working directory.

The contributor may perform interim commits during the development of the proposed changes.

The contributor shall use the Conventional Commits specification for structuring commit

messages.

Here are some examples of Conventional Commit messages:

GitHub Help

Note

feat: add password reset functionality
docs: update installation instructions

NTCIP 8008 Test the Updates

- 35/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

https://www.conventionalcommits.org/en/v1.0.0/

Committing changes ensures that the changes are logged in the contributor's local git

account and is required prior to pushing the material to the contributor's online copy.

4.2.12 Push the Update to Contributor's Online Repository

Once the contributor has completed the proposed revisions and has created a local commit, the

contributor shall push the proposed changes to the contriutor's online repository.

The changes need to be posted to the online repository so that other users can review the

changes prior to their incorporation into the shared repository.

4.2.13 Make Pull Request

Once the contributor has completed the above steps, the contributor shall complete a pull

request.

The contributor's pull request shall comply with the selected pull request template for the

project, completing each field.

The contributor shall verify that GitHub does not report any action bot or other failures upon

submitting the PR.

chore(build): update dependencies
fix(login): resolve issue with incorrect password validation
refactor(api): streamline error handling in user service

Note

Note

NTCIP 8008 Push the Update to Contributor's Online Repository

- 36/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

In order to ensure that changes made to the shared repository fit with the project plan, follow

subittal guidelines, and are free of bugs, it is important that they are reviewed before being

incorporated. As such, rather than allowing each contributor to push changes to the shared

repository without any review, they request the maintainer to pull the proposed changes. The

request initiates the review process, and if successful, the changes will be pulled. The request

for the maintainers to pull the updates is called a "pull request" (PR). In order to ensure that

these requests are valid and useful, they must comply with the pull request template (e.g.,

identify the issue that the change claims to address).

It is especially important that the PR identifies the issue that the PR claims to address and

must prefix the issue number with "Fixes #" to ensure that the issue is closed once the

change is accepted.

The contributor will need to correct any errors that occur during the submittal process to

ensure that the PR is received by the maintainers.

A PR may be marked as invalid and closed if:

the issue is not assigned to the contributor who opened the PR,

no issue is linked to the PR,

the PR template is incomplete, or any section in the template is deleted, or

changes are made directly in the default (main) branch.

4.2.14 Cooperate with Reviewers

The contributor shall work with the review team to address any questions, concerns, or

problems that arise.

The contributor may appeal any direction received from the reviewers to the parent WG.

The contributor shall accept the direction of the review process, including any appeals.

Note

Warning

•

•

•

•

NTCIP 8008 Cooperate with Reviewers

- 37/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request-from-a-fork

After a pull request has been submitted, reviewers can have questions or concerns (e.g.,

failure to comply with style guidelines). In addition, if multiple proposals are received in a

short period, last minute changes can cause merge errors that need to be resolved. The

contributor is typically the person most qualified to make revisions to the proposed changes

without introducing errors. Although expected to be rare, there can be instances where the

contributor and reviewers have different opinions about how a change should be

implemented. The shared project is managed by the entire team and the contributor needs to

respect the decisions made by the full team.

4.3 What Happens Next?

After your contribution has been submitted and reviewed, one of the following outcomes may

occur:

Your contribution is accepted: If your contribution is approved by the project maintainers, it

will be merged into the main branch of the codebase.

Your contribution requires changes: Sometimes, the project maintainers may request

changes to your contribution before it can be accepted. This could be due to coding issues,

conflicts with other changes, or a need for additional documentation. In this case, make the

requested changes and resubmit your pull request.

Your contribution is rejected: In some cases, your contribution may not align with the

project's goals or requirements, or it may not be the best solution to a problem. If your

contribution is rejected, don't be discouraged. Take the feedback you received as an

opportunity to learn and improve. You can always try contributing to another project or

submitting a different contribution to the same project.

4.4 Keeping Branches Up to Date

It is highly recommended that you update your remote and local branches habitually. That way,

your branch will have the latest update when merged into the main branch of the original

(upstream) repository.

The best times to update your branches are before you push your changes to the remote

repository and while you're waiting for your pull request to be reviewed.

Note

1.

2.

3.

NTCIP 8008 What Happens Next?

- 38/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

In general, it is preferrable to make small incremental changes to the project and to provide the

updated materials as soon as possible after taking control of an issue. The longer the duration

between checking out the project and submitting a pull request the higher the chance that

another contributor will make competing changes in one of your files, which may need to be

manually inspected to properly merge the changes.

4.5 Merge Conflicts

Merge conflicts are something you'll commonly encounter when contributing to an open source

project. When two branches have made different changes to the same line(s) in the same file(s),

Git cannot automatically determine which change to keep, resulting in a conflict.

When a merge conflict occurs, Git adds conflict markers (<<<<<<< , ======= , and >>>>>>) to

indicate the conflicting lines from different branches. Everything between the <<<<<<< and

======= is the changes that you worked on (current changes). And everything between the

======= to >>>>>>> is the incoming changes from the remote main branch.

You need to pay attention to the conflicts and decide how you want to resolve them. You can

keep only your change, incoming change, or both changes.

4.5.1 Tips to Prevent Resolving Merge Conflicts Repeatedly

Some open source repositories, such as OpenSauced's guestbook and pizza-verse repositories,

have high contribution activities in the same files that can cause merge conflicts.

Below are some tips to prevent you from resolving merge conflicts repeatedly when contributing

to open source projects:

4.5.1.1 1. Following Instructions

Ensure you follow the instructions in the project's README or Contributing Guide, and don't miss

any step.

4.5.1.2 2. Pull Request Form

Complete the template form and fill in all areas when creating a pull request.

4.5.1.3 3. Resolving Merge Conflicts Immediately

If a branch has merge conflicts that must be resolved, the merge button is automatically

disabled. So, maintainers are not able to merge the pull request.

NTCIP 8008 Merge Conflicts

- 39/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

https://github.com/open-sauced/guestbook
https://github.com/open-sauced/pizza-verse

When you notice merge conflicts in your pull request or if a maintainer asks you to resolve

merge conflicts, fix them immediately. The sooner you resolve the conflicts, the sooner

maintainers can review and merge your pull request.

4.5.2 Merge Conflicts in the Guestbook Repository

Since the primary purpose of the OpenSauced guestbook is to add your name to .all-

contributorsrc and the README.md files, there is a high chance that you will encounter merge

conflicts.

The conflicts happen when maintainers have merged pull requests before yours while you're

working on your changes or waiting for your pull request to be reviewed. And you need to resolve

them before your pull request can be merged.

4.5.2.1 Resolving Merge Conflicts

Before resolving merge conflicts, you must first

update your branches. Then, follow these steps:

In the .all-contributorsrc file:

Click the "Accept Both Change" option on the top of your workspace in VS Code.

Move your profile details to the end of the contributors' array and fix anything necessary.

In the README.md file:

Click the "Accept Incoming Change" option on the top of your workspace in VS Code for each

conflict in this file.

Run npm run contributors:generate .

1.

2.

3.

4.

5.

6.

NTCIP 8008 Merge Conflicts in the Guestbook Repository

- 40/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

You will now see that the all contributors badge has been incremented, and your profile is

generated at the end of the contributors' list in the README.md file.

Add and commit your changes.

git commit -am "Resolve merge conflicts"

Push your commits to your remote branch.

git push

4.6 Setup

4.6.1 Install Git

Download and install the git program appropriate for your platform. Using default options should

be fine unless you have a particular preference (e.g., for text editor).

4.6.2 Create a GitHub account

Go to github.com, create an account and sign in

4.6.3 Fork the Desired Repository

4.6.4 Install GitKraken

Recommended: Download and install GitKraken. Link GitKraken to your GitHub Account

4.6.5 Clone Repository

Make sure to select a directory where you want to store the local copy of the repository. This

directory needs to be empty

May 19, 2025

1.

2.

NTCIP 8008 Setup

- 41/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

https://git-scm.com

Section 5 Maintainer Responsibilities

5.1 Overview

The maintainer for an open-source project fulfills many responsibilities, including setting up the

project, managing issues, reviewing submittals, and leading the development community. In

addition, the maintainer is often a prime contributor.

5.2 Establish Repository

The maintainer shall work with the sponsoring SDO to establish the open-source repository for

the project.

NTCIP repositories are hosted athttps://github.com/ite-org/.

5.3 Configure Project Settings

5.3.1 Issues and Discussions

The maintainer shall ensure that the issues and discussion pages are enabled for the ITS open-

source project.

Within GitHub, issues are enabled by default but the discussions tab is disabled. To enable,

go to the settings tab and select discussions in the general section.

5.3.2 Pages

If the project includes documentation, the maintainer shall ensure that GitHub pages is enabled

for the project.

Example

Note

NTCIP 8008 Maintainer Responsibilities

- 42/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

https://github.com/ite-org/

To activate GitHub Pages using MkDocs, create a gh-pages branch. The go to the settings tab

and select pages from the left-hand menu. Set Source to "deploy from a branch" and then

select the "gh-pages" branch and the /root directory.

5.3.3 Dependabot

If the project includes code, the maintainer may configure Dependabot to report issues or create

pull requests to update dependencies with security vulnerabilities.

Dependabot is a GitHub feature that monitors the project's dependencies and reports any

possible security vulnerabilities. To learn more about this feature, please read through the

GitHub documentation.

5.4 Set Up Project Files

5.4.1 Overview

The maintainer shall ensure the following files are provided in the repository when starting the

project and maintained throughout the project:

README.md

CODE_OF_CONDUCT.md

CONTRIBUTING.md

LICENSE.md

SECURITY.md

.github/CODEOWNERS

appropriate issue templates in .github/ISSUE_TEMPLATE/

appropriate PR temapltes in .github/PULL_REQUEST_TEMPLATE/

appropriate saved replies

GitHub Process

Note

•

•

•

•

•

•

•

•

•

NTCIP 8008 Dependabot

- 43/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

https://docs.github.com/en/code-security/getting-started/dependabot-quickstart-guide

Additionally, if the site includes documentation, the maintainer shall ensure the following files

are provided in the repository when starting the project and maintained throughout the project:

.gitignore

mkdocs.yml

.github/workflows/deploy.yml (generates the documentation)

docs/index.md

docs/stylesheets/extra.css

overrides/main.html (adds a status badge to the page)

overrides/partials/nav.html (changes the naviation heading to be "Contents")

overrides/partials/toc.html (changes TOC heading to be the document name)

Finally, the site shall include installation guidance, which may be contained in the README.md

file, a separate INSTALLATION.md file, or in project documentation.

A template repository containing all of these files, which can be used to initialize new

projects, is stored on the ITE GitHub Site.

5.4.2 Readme.md File

The README.md file shall contain an introduction to the open-source project. A good readme

file should be clear, concise, up-to-date, and detailed. This file is located in your root directory

and is displayed as the homepage of the repository within GitHub.

The README.md file shall contain the following information:

project title

information on how to access the current documentation for the project

information on how to access prior releases of the project

project summary, including its status and overview

Acknowledgements of relevant funding sources, sponsors, and other open-source projects

installation guidance

tech and tools used in the project

link to the code of conduct

link to discussion forum for the project

link to the issues page for the project and the types of issues accepted for the project

link to the contributing guidelines

link to the open source license

•

•

•

•

•

•

•

•

GitHub Help

•

•

•

•

•

•

•

•

•

•

•

•

NTCIP 8008 Readme.md File

- 44/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

https://github.com/ite-org/open-source-template

A README file is written in the Markdown language, a popular language used in open source

documentation like READMEs. The readme file does not use any of the special codes

introduced by MkDocs or Materials for MkDocs.

OpenSauced App

Astro documentation

freeCodeCamp

ITS Open-Source Process

5.4.3 Installation Guidance

The installation guidance may be contained within the README.md file (e.g., if it is simple), be a

separate file, or reference a section within the project documentation.

This guide identifies the tools and technology used by the project and includes instructions for

the following:

forking the repository

cloning the repository

installing the dependencies

setting up the environment variables

setting up the database, if applicable

running the project locally

The best way to test your guide is by setting up the project locally using your guide. If you

encounter issues getting your project to work, you will discover it quickly and can update the

documentation to add or clarify the missing piece.

OpenSauced Contributing Guidelines

5.4.4 Code of Conduct File

The CODE_OF_CONDUCT.md file shall define the rules and behaviors that are to be followed for

the project.

Note

Examples of good README files

•

•

•

•

•

•

•

•

•

•

Example

NTCIP 8008 Installation Guidance

- 45/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

https://www.markdownguide.org/
https://github.com/open-sauced/app/blob/beta/README.md
https://github.com/withastro/astro/blob/main/README.md
https://github.com/freeCodeCamp/freeCodeCamp/blob/main/README.md
https://github.com/ite-org/NTCIP-8008/blob/main/README.md
https://opensauced.pizza/docs/contributing/introduction-to-contributing/

The CODE_OF_CONDUCT.md file should consist of a reference to the ITS Open-Source Code of

Conduct with any exceptions and extensions identified.

It is expected that exceptions and extensions to the code of conduct will be rare.

5.4.5 Contributing File

The CONTRIBUTING.md file shall define the rules for contributing to the project.

The CONTRIBUTING.md file should consist of a reference to the ITS Open-Source Contributor

Responsibilities with any exceptions and extensions identified.

The CONTRIBUTING.md file should identify specific types of conventions that apply to the

project.

The ITS Open-Source Process project only has documentation and while the resulting

specification discusses coding conventions, the project does not include any code, ASN.1 or

MIBs.

Note

Example

NTCIP 8008 Contributing File

- 46/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

Areas where exceptions and extensions are expected to occur include:

documentation conventions (e.g., extensions for consistency in presenting project-specific information),

coding conventions (e.g., for languages not discussed in the ITE Open Source Process documentation, special naming conventions),

testing and linting requirements

the process to claim ownership pf issues (e.g., WG approvals),

guidelines for commit conventions

requirements for creating pull requests (e.g., fields that need to be included), and

requirements for pull requests to be approved (e.g., WG approvals)

5.4.6 License File

Making your GitHub project public is not the same as licensing your project. Public projects

are covered by GitHub’s Terms of Service, which allows others to view and fork your project,

but your work otherwise comes with no permissions.

If you want others to use, distribute, modify, or contribute back to your project, you need to

include an open source license. For example, someone cannot legally use any part of your

GitHub project in their code, even if it’s public, unless you explicitly give them the right to do

so.

The LICENSE file shall be a well-known Free and Open Source license.

For NTCIP documentation projects, including standards and ASN.1, the license should be CC BY

4.0.

The CC BY license is designed for documentation and other creative works where uers are

allowed to use, distribute, modify, and contribute but any derivative works are required to give

attribution to the source of the material and cannot "implicitly or explicitly assert or imply any

connection with, sponsorship, or endorsement by the licensor."

For NTCIP projects involving code for a computer program, the license should be the Gnu Lesser

General Public License Version 3.

Note

•

•

•

•

•

•

•

Per The Legal Side of Open Source

Note

NTCIP 8008 License File

- 47/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

https://opensource.guide/legal/
https://docs.github.com/en/site-policy/github-terms/github-terms-of-service#3-ownership-of-content-right-to-post-and-license-grants
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.gnu.org/licenses/lgpl-3.0.en.html
https://www.gnu.org/licenses/lgpl-3.0.en.html

The LGPL v3 license is designed for compilable software that runs on a machine. Like the CC

BY license, it allows uers to use, distribute, modify, and contribute material as long as they

give attribution to the original source and does not provide any rights to the names,

trademarks, or logos of the original source.

5.4.7 Security file

The SECURITY.md file shall indicate how to provide reports of security issues through private

channels to prevent exposure of the vulnerabilities prior to their fix.

5.4.8 Code Owners File

The .github/CODEOWNERS file shall conform to the rules defined in the official GitHub

documentation.

This ensures that the correct maintainers are notified when PRs are submitted.

By opting-in to "require approval" and "require review from code owners", a WG can require a

majority of voting members of the WG to approve any pull request before it can be merged

into the protected branch. This can reduce the chance of merging pull requests that can

break production.

5.4.9 Issue Templates

The maintainer shall define appropriate issue forms.

The maintainer shall develop the forms using YAML per the GitHub instructions.

Note

Note

Example

NTCIP 8008 Security file

- 48/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-code-owners
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-code-owners
https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/syntax-for-issue-forms

Issue forms allow the maintainer to ensure commenters provide key information (or at least

provide text for specific fields) when they report issues making the triage process, and the

review of pull requests easier to perform. Additionally, future contributors can benefit from

these templates by understanding the history of changes made, which can help them debug

or understand the code involved.

You can create various issue forms, such as bug reports, feature requests, documentation

updates, etc. Each form can specify which fields are required, such as the steps for

reproducing the bug or a details section for a feature request. The form can also be designed

to automatically attach specific labels like feature , needs triage , or bug to quickly identify

the type of issue.

.github/ISSUE_TEMPLATE/documentation_bug.yml or .github/ISSUE_TEMPLATE/

documentation_enhancement.yml

5.4.10 Pull Request Templates

The maintainer shall define appropriate pull request templates.

GitHub currently only supports markdown templates for pull requests rather than YAML

forms. Nonetheless, the templates serve a similar purpose in that they guide contributors in

providing specific and structured information when opening pull requests in your project.

.github/PULL_REQUEST_TEMPLATE/PULL_REQUEST_TEMPLATE.md

Note

Example

Note

Example

NTCIP 8008 Pull Request Templates

- 49/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

https://github.com/ite-org/NTCIP-8008/tree/main/.github/ISSUE_TEMPLATE/documentation_bug.yml
https://github.com/ite-org/NTCIP-8008/tree/main/.github/ISSUE_TEMPLATE/documentation_bug.yml
https://github.com/ite-org/NTCIP-8008/tree/main/.github/ISSUE_TEMPLATE/documentation_enhancement.yml
https://github.com/ite-org/NTCIP-8008/tree/main/.github/ISSUE_TEMPLATE/documentation_enhancement.yml
https://github.com/ite-org/NTCIP-8008/tree/main/.github/ISSUE_TEMPLATE/documentation_enhancement.yml
https://github.com/ite-org/NTCIP-8008/tree/main/.github/ISSUE_TEMPLATE/documentation_enhancement.yml
https://github.com/ite-org/NTCIP-8008/tree/main/.github/PULL_REQUEST_TEMPLATE/PULL_REQUEST_TEMPLATE.md

You can learn more about creating a pull request template on the official GitHub

documentation.

5.4.11 Saved Replies

Sometimes, you repeatedly write the same reply to issues or pull requests. Clear communication

between maintainers and contributors is crucial. So, when you write all comments manually,

your messages will no longer be consistent and may be unclear. You can create saved replies

when you frequently respond to issues and pull requests with the same comments.

Tip

NTCIP 8008 Saved Replies

- 50/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/creating-a-pull-request-template-for-your-repository
https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/creating-a-pull-request-template-for-your-repository

Saved replies allow you to create a reusable response to issues, pull requests, and discussions

and use it across repositories. It will save you time responding to contributors while keeping the

consistency of your message. You can always modify your replies if necessary.

Read the GitHub documentation for complete instructions about how to create saved replies.

5.4.12 Gitignore File

If there are any files that are likely to exist within the project directory that should not become a

part of the repository, the maintainer shall include a .gitignore file.

Projects that include documentation that is based on MkDocs typically have a site directory

generated by MkDocs as a part of the process to generate a static website for review. This

directory is not intended to be part of the registry as GitHub will produce its own generated

site. In this case, the project is to include a .gitignore file that contains the line "site/", as

for this project.

5.4.13 Mkdocs.yml File

If the project includes documentation using MkDocs, the maintainer shall define a mkdocs.yml

file.

Example

NTCIP 8008 Gitignore File

- 51/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

https://docs.github.com/en/get-started/writing-on-github/working-with-saved-replies/about-saved-replies
https://docs.github.com/en/get-started/writing-on-github/working-with-saved-replies/creating-a-saved-reply
https://github.com/ite-org/NTCIP-8008/blob/main/.gitignore

The mkdocs.yml file defines directives to the mkdocs engine when generating the static

website. For example, it defines

name of the site,

URL of the site,

navigation menu,

theme,

extensions/plugins used, and

other details

Mkdocs file for ITS Open-Source Process

5.4.14 Deploy.yml File

If the project includes documentation using MkDocs, the maintainer shall define a .github/

workflows/deploy.yml file that deploys the MkDocs site to GitHub Pages.

The deploy.yml file can be used to automate actions when pull requests are merged with the

project. For example, for projects that use MkDocs, the deploy file can ensure that the GitHub

Pages site is updated with the new material when a pull request is merged.

Note

•

•

•

•

•

•

Example

Note

NTCIP 8008 Deploy.yml File

- 52/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

https://github.com/ite-org/NTCIP-8008/blob/main/mkdocs.yml

Deploy file for ITS Open-Source Process

5.4.15 Index File

If the project includes documentation using MkDocs, the maintainer shall define a docs/

index.md file that provides a cover page for the document.

5.4.16 Extra.css File

If the project includes documentation using MkDocs, the maintainer shall define a docs/

stylesheets/extra.css file that defines the heading styles to be used for the body and the

annexes (i.e., adding setion numbers in front of headings).

The maintainer shall ensure that this badge only changes per the approval process defined for

the project.

5.4.17 Main.html File

If the project includes documentation using MkDocs, the maintainer shall define a overrides/

main.html file that provides a badge that identifies the status of the project files.

The maintainer shall ensure that this badge only changes per the approval process defined for

the project.

By default, MkDocs does not display a status badge. Adding this badge ensures that users

are aware of the status of the material located on the page.

Example

Note

NTCIP 8008 Index File

- 53/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

https://github.com/ite-org/NTCIP-8008/blob/main/.github/workflows/deploy.yml

Main.html file for ITS Open-Source Process

5.4.18 Nav.html File

If the project includes documentation using MkDocs, the maintainer shall define a overrides/

partials/nav.html file that overrides the title assigned to the left-hand navigation menu to be

"Contents".

By default, MkDocs entitles the left hand navigation (i.e., navigation of pages) with the title of

the site. To better align with NTCIP formats, the nav.html file is provided to change this to

"Contents".

Nav.html file for ITS Open-Source Process

5.4.19 Toc.html File

If the project includes documentation using MkDocs, the maintainer shall define a overrides/

partials/toc.html file that overrides the title assigned to the navigation menu on the right

side of the screen.

By default, MkDocs entitles the right-hand navigation (i.e., the contents of the current page)

as "Contents". To better align with NTCIP formats, the standard toc.html file changes this to

the title of the current page.

Example

Note

Example

Note

NTCIP 8008 Nav.html File

- 54/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

https://github.com/ite-org/NTCIP-8008/blob/main/overrides/main.html
https://github.com/ite-org/NTCIP-8008/blob/main/overrides/partials/nav.html

Toc.html file for ITS Open-Source Process

5.5 Define Project Structure

Once the project is established, configured, and the loaded with the initial project files, the

maintainer shall establish the plan for the project by defining issues along with any appropriate

stub files that can provide further guidance.

This includes defining the plan for all aspects of the project (e.g., documentation and code).

5.6 Issue Triage

5.6.1 Overview

Once issues are being created for the project, the maintainer will need to triage these issues to

ensure that they contribute to the project plan and so that they can be claimed by contributors.

Learning to triage issues is essential for any open-source maintainer. This involves going

through the existing list of open issues and prioritizing them in order of importance. Some open

issues will be critical bug fixes, while others might be nice to have feature requests. Sometimes,

you might have issues opened for things that are not a right fit for the project.

5.6.2 Triage Pre-Assessment

5.6.2.1 Overview

Prior to performing any detailed triage, it is important to screen reported issues that are not

appropriate for further investigation.

5.6.2.2 Dealing with Spam

When a comment is spam, clearly combative, or unhelpful, the maintainer should avoid direct

engagement, label the issue as spam , close the issue, and move on.

Example

Note

NTCIP 8008 Define Project Structure

- 55/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

https://github.com/ite-org/NTCIP-8008/blob/main/overrides/partials/toc.html

This project is terrible! Nothing works, and your code is garbage. I can't believe anyone would

use this. Fix it ASAP!!!

5.6.2.3 Insufficient Information Issues

When a comment does not provide concrete details about the issue, the maintainer should

respond by requesting more information.

If it is a bug report, ask for more details on reproducing it. If it is a feature request, ask for

clarification on style or functionality changes.

If the commenter does not respond within a week, the maintainer should message them again

for more details.

If a few weeks pass and the issue is not considered critical, the maintainer may close the issue.

5.6.2.4 Stale Issues

The maintainer may may label issues that have not been worked on for months as stale .

An issue reported on a portion of a project that has been significantly edited by other

contributions.

If the maintainer wishes to resurrect a stale issue, the maintainer shall go through the normal

triage process, including adding and removing labels as appropriate.

If the maintainer believes a stale issue no longer applies, the maintainer should close the

issue. This process may be automated (e.g., using an action like Close Stale Issues and PRs.

5.6.2.5 Ensuring Proper categorization

For issues that have sufficient information and are not spam or stale , the maintainer shall add

and/or remove labels as appropriate for proper management.

Example

Example

Example

NTCIP 8008 Triage Pre-Assessment

- 56/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

https://github.com/actions/stale

Most ITS standardization projects are expected to have a small number of contributors, in

which case, the following set of labels are generally appropriate. Projects with more

contributors should consider a fuller range of labels as adopted by the open-source

community.

Note

NTCIP 8008 Triage Pre-Assessment

- 57/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

The following labels should be considered for most specification projects:

NTCIP 8008 Triage Pre-Assessment

- 58/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

General Type Labels

github automation: an issue related to the automated github scripts in testing or generating the documentation.

question: Indicates a general inquiry or a request for clarification about how something works. Questions should be moved to the

discussion tab, but the issue can be labeled with question and closed.

Type Labels for Documentation

documentation bug: Identifies a reported problem or flaw in the documentation.

documentation enhancement: Refers to a suggestion or request to improve or add informative text in the documentation.

new user need: Suggests a new user need to be added in the document.

user need modification: Suggests a modification to a user need in the document.

new requirement: Suggests a new requirement to be added in the document.

requirement modification: Suggests a modification to a requirement in the document.

dialog modification: Suggests a modification to a dialog in the document.

ASN.1 modification: A change to the ASN.1 or MIB.

Type Labels for Code

bug: Identifies a reported problem, flaw, or unexpected behavior in the code.

enhancement: Refers to a suggestion or request to improve or add features to the project.

feature: Used for issues proposing new functionality or significant changes.

refactor: A change in the codebase that improves its structure or readability without altering its functionality.

test: Issues related to unit tests, integration tests, or overall testing improvements.

Priority Labels (Help prioritize issues based on urgency or importance)

critical: Indicates urgent issue related to an existing release that needs to be addressed immediately (e.g., perhaps requiring its own

release to formalize in a timely manner).

high priority: Indicates urgent issue that needs to be addressed as soon as possible to allow for other tasks to proceed for the current

update but not critical.

medium priority: Important issue to address prior to next release that relates to functionality but not high priority.

low priority: Non-urgent issues that may be tackled if there’s extra time or resources available.

Status Labels (Track the progress of an issue or pull request)

in progress: The issue is currently being worked on.

blocked: Work on this issue is delayed or cannot proceed due to a dependency or external factor.

needs discussion: Indicates that the issue or pull request requires further conversation or clarification before proceeding.

triage: Newly created issues that need to be reviewed, categorized, and prioritized.

ready for review: The pull request is awaiting review by project maintainers.

duplicate: Marks an issue as being identical or closely related to an already existing issue.

wontfix: Indicates that the maintainers have decided not to address the issue, either due to scope, relevance, or priority.

Difficulty or Effort Labels (Classify the expected effort required to address the issue)

good first issue: Meant for new contributors; these are usually easy-to-solve problems with clear instructions.

beginner-friendly: Similar to “good first issue,” these are relatively simple problems that beginners can address.

help wanted: Indicates that maintainers need assistance with the issue, open to contributions.

complex: Issues that are challenging, requiring significant experience or effort to resolve.

1.

•

•

2.

•

•

•

•

•

•

•

•

3.

•

•

•

•

•

4.

•

•

•

•

5.

•

•

•

•

•

•

•

6.

•

•

•

•

NTCIP 8008 Triage Pre-Assessment

- 59/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

Version or Milestone Labels (Track issues by release or milestone)

compatibility: Associates an issue or pull request with a specific version or release milestone.

next release: Indicates that the issue is planned for inclusion in the upcoming release.

future: Refers to issues or features planned for future releases beyond the current roadmap.

5.6.3 Triaging Bugs

The maintainer should verify the existance of any reported bug.

If the maintainer expects to assign the issue to himself, the verification step can be

postponed until the action is undertaken to correct the bug. If the bug cannot be verified, reply

to the issue's original poster to gain more information and context.

5.6.4 Triaging Feature Requests

The maintainer shall ensure that any new feature request fits into the vision for the project.

The maintainer shall communicate with the original poster of the issue to determine how to best

deal with the issue, including:

assigning to the originator, if they express a willingness to contribute a solution,

assigning to the originator and someone else (e.g., a maintainer), if the originator is willing to contribute to a solution but is unwilling to develop

and propose it,

adding a help wanted , if the maintainer wishes to look for another contributor, or

assigning it to himself or another core team member, if the maintainer expects the issue to be addressed by them in a timely manner.

Complex issues are best assigned to core team members.

5.6.5 Triaging Duplicate Issues

When assigning a duplicate label, the maintainer should respond to the originator of the issue.

7.

•

•

•

Note

•

•

•

•

Note

NTCIP 8008 Triaging Bugs

- 60/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

Thank you for taking the time to open this issue. Another team member is working on this

feature, which will be added soon. As a result, we are going to close this issue.

5.6.6 Triaging Rejected Issues

When assigning a wontfix label, the maintainer should respond to the originator of the issue.

Thank you for being so interested in our project. The feature you have proposed would not be

a good fit for this project's current scope and direction. At this time, we will not be moving

forward with this feature.

5.7 Reviewing Pull Requests

5.7.1 Overview

It is the maintainer's responsibility to ensure that the suggested code or documentation update

meets the standards of the project and doesn't introduce any new issues for the project. You will

also need to work with the contributor to help solve issues they encounter.

5.7.2 Pull-Request Pre-Assessment

5.7.2.1 Spam Pull Requests

For any pull request deemed to be spam, the maintainer should label the request as spam , close

the pull request, and not respond to the contributor.

whitespace changes to the README file or other files

random changes to files without an accompanying issue or explanation

numerous links to unrelated websites or promotes products/services

plagiarized content from other sources without permission or proper attribution

5.7.2.2 Low-Quality Pull Requests

For a pull request deemed to be of low quality, the maintainer should reach out to the author,

explaining what needs to be added and what changes need to be made.

Example

Example

Example

•

•

•

•

NTCIP 8008 Triaging Rejected Issues

- 61/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

unfinished pull requests that do not address the entire issue

code that does not fit within the established style guide for the project

incomplete pull request forms that do not provide sufficient information on what changes were made

address multiple issues at once and make it challenging to review

Most of the time, low-quality pull requests are due to contributors not being aware of the

rules to follow and need extra explanation and time to improve their pull requests.

5.7.2.3 Stale Pull Requests

If the maintainer is unable to get a response from a contributor regarding an issue after a

repeated attempts over several weeks, the maintainer may reassign the associated issue; if

there is an associated pending pull request, the maintainer shall either close the pull request or

take it over (i.e., by using the code in the pull request as the starting point for additional

modifications).

5.7.3 Testing

5.7.3.1 Overview

The maintainer shall review each contribution to ensure that all tests pass, the contribution

works as expected without introducing errors.

5.7.3.2 Automated Testing

The maintainer should maintain automated tests to protext against errors.

GitHub allows maintainers to set up an automated test suite that runs on every pull request

and merges into the main branch. Good automated test suites can help catch bugs from

going into production and breaking the application.

Example

•

•

•

•

Note

GitHub Help

NTCIP 8008 Testing

- 62/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

Is Website Vulnerable finds publicly known security vulnerabilities in JavaScript libraries'

websites

5.7.3.3 Failing Automated Tests

If a maintainer receives a pull request that fails automated testing, the maintainer should wait a

few days to allow the contributor to resolve the issue independently.

If the contributor does not resolve the issue within a few days, the maintainer shall contact the

contributor to see if they need help.

If the failing test is unrelated to the contributor's changes, the maintainer shall let the contributor

know that the error is safe to ignore and that it will be fixed in another pull request.

If the contributor fails to respond after repeated attempts over several weeks or months, the

maintainer should close the pull request and move on.

If multiple contributors fail the same set of tests, the tests may need improvement.

Example

Note

NTCIP 8008 Testing

- 63/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

https://github.com/marketplace/actions/is-website-vulnerable

5.7.3.4 Code Reviews

Prior to accepting any pull request, the maintainer shall review all proposed changes to ensure

that they are designed to address the reported issue as claimed and that they conform to the

projects coding and documentation guidelines.

Performing this test before manual testing is useful as it will provide insights into the types of

manual tests that are most appropriate.

5.7.3.5 Manual Testing

Prior to accepting a significant pull request, the maintainer should manually test the project

using his local machine.

If a pull request involves a small change to documentation or code, manual testing is less

important, but the maintainer is the last line of defense before a pull request is merged in,

which can potentially introduce new issues.

5.7.4 Effective Feedback

If the maintainer discovers a problem with the pull request, the maintainer shall respond to the

contributor with a detailed account of the problem.

Note

Note

NTCIP 8008 Effective Feedback

- 64/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

Sometimes, it helps to include a screenshot or screen recording. If the automated tests did

not catch the problem, it might be worth creating a separate issue to update the test suite.

The maintainer shall indicate the importance of each problem identified in the contribution with

critical , high , medium , or low .

Feedback provides a public log of how an issue has been addressed and needs to be

informative, constructive, and helpful for the reviewer, contributor, and others that might read

it at a later date.

High: Please use more descriptive variable names for better readability. For example, revise

the code to replace variable d with duration .

5.7.4.1 Missing Tests

Significant contributions of code should be accompanied with tests to help ensure that

everything is working as expected.

If the contribution does not include such tests, reach out to them to determine how they

tested their contribution and let them know what parts need to be tested.

5.8 Creating a Release

The maintainer shall create a formal release for each version of the document approved for

release by the responsible WG or committee.

Note

Note

Example

Note

NTCIP 8008 Creating a Release

- 65/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

Within GitHub, this can be achieved through theReleases tab.

The maintainer shall assign a tag to the release that indicates the version number per Semantic

Versioning 2.0.0.

This produces a version number in the format of <major>.<minor>.<patch>[-<pre-

release>] format, where

the major number increments (and the other values reset to 0) when non-backwards compatible changes are made,

the minor version increments (and patch resets) when features are added in a backwards compatible manner,

the patch increments when backward compatible fixes are made without any new features, and

an optional pre-release code (preceded by a hyphen) indicates versions under development and must have a sequential alphanumeric identifier

The maintainer shall attach a PDF and zip archive of the website in versioned directories in the

gh-pages branch.

This can be automated with GitHub actions.

When deploying a new version, ensure the previous version is moved into its own directory

before overwriting the index.html and other files for the new release.

GitHub Help

Note

•

•

•

•

gh-pages/
├── index.html (latest version)
├── v1.0.0/
├── v1.0.1/
├── v1.1.0/
└── v2.0.0/

GitHub Help

Note

NTCIP 8008 Creating a Release

- 66/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

https://semver.org
https://semver.org

5.9 Building a Community

5.9.1 Overview

A vital component of any open source project is its community. Building a strong community

can help accelerate the growth of your open source project. As new contributors discover and

start to contribute to your project, you will want to create spaces for communication and

collaboration.

If your project is on GitHub, you can use GitHub Discussions as a way for contributors to post

questions and facilitate conversations. WG meetings should be advertised on the discussion

board to encourage participation.

5.9.2 Promptly Respond and Address Concerns

Maintainers should establish a schedule to review incoming issues and pull requests and post

this schedule within the discussion forum.

Example GitHub Action

name: Deploy MkDocs Site and Generate PDF
on:
 push:
 tags:
 - 'v*'

jobs:
 build:
 runs-on: ubuntu-latest
 steps:
 - name: Checkout code
 uses: actions/checkout@v3

- name: Set up Python
 uses: actions/setup-python@v4
 with:
 python-version: '3.x'

- name: Install dependencies
 run: |
 pip install mkdocs-material
 pip install weasyprint

- name: Build MkDocs site
 run: mkdocs build

- name: Generate PDF
 run: |
 weasyprint site/index.html site/docs.pdf
 env:
 WEASYPRINT_BASEURL: 'https://yourusername.github.io/repository-name/'

- name: Deploy to GitHub Pages
 uses: peaceiris/actions-gh-pages@v4
 with:
 github_token: ${{ secrets.GITHUB_TOKEN }}
 publish_dir: ./site

- name: Upload PDF to release
 if: github.ref_type == 'tag'
 uses: actions/upload-artifact@v3
 with:
 name: docs-${{ github.ref_name }}.pdf
 path: site/docs.pdf

NTCIP 8008 Building a Community

- 67/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

https://docs.github.com/en/discussions

It is important to set expectations as to how fast maintenance issues are likely to be

addressed. This timline might vary considerably across ITS open-source projects and during

teh lifetime of any one project (e.g., there are often periods of moew active development and

less active development).

The maintainer should set up GitHub Actions to automate responses that welcomes each new

contributor and provides an estimated time by which the issue triage or PR review can be

expected

You can learn how to set one up inthis article.

5.10 Advanced Features

5.10.1 Overview

Leveraging GitHub Actions to bring Continuous Integration / Continuous Delivery or Deployment

(CI/CD) into your workflow directly in your repository will let you run code, test, build, and deliver

or deploy software with simple and secure workflows. Automating these tasks will speed up

your deployment process.

Note

Note

NTCIP 8008 Advanced Features

- 68/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

https://docs.github.com/en/actions
https://dev.to/opensauced/github-actions-a-maintainers-best-friend-488n

Using Git, GitHub, and GitHub Actions to build a CI/CD pipeline should give you confidence in

your code.

Below are some helpful resources to help you build a CI/CD pipeline with GitHub Actions:

GitHub Docs: The complete CI/CD solution

How to build a CI/CD pipeline with GitHub Actions in four simple steps

There are many types of actions that you can set up for your project, depending on what you

need. Below are some GitHub Actions that you usually find across repositories:

5.10.2 Linter

Most open source repositories have linters that run on each pull request. Linter is a tool for

detecting potential errors and maintaining a consistent code style in a project. Super-Linter is

one of the most used actions. This action can help you maintain code quality and achieve a

more readable and consistent style.

5.10.3 Code Scanning Tools

Code scanning is a tool for detecting security vulnerabilities, possible bugs, and errors in code.

You can use GitHub's code scanning feature and configure tools like CodeQL, which GitHub

maintains, or third-party scanning tools such as SonarQube.

5.10.4 Creating and Customizing Actions

Actions of note:

GitHub Marketplace

Take Action: allows contributors to assign themselves to an issue by typing the .take command in the issue's comment.

Triage Action: blocks the Take Action whenever a needs triage or core team work label exists.

You can read more about GitHub Actions and how to create one in the official documentation.

5.10.5 Projects

Keeping track of your issues is getting more challenging as your project progresses. A great tool

that can help you organize and track your issues is Projects on GitHub. With projects, you can

efficiently manage your project's features, roadmaps, or releases as they're built from and

integrated with issues and pull requests that you add.

You can choose a template for your project. One of the templates is the "Kanban" template.

Here, you can create notes and place the existing issues and pull requests in the "Backlog",

•

•

•

•

•

NTCIP 8008 Linter

- 69/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

https://github.com/solutions/ci-cd/
https://github.blog/2022-02-02-build-ci-cd-pipeline-github-actions-four-steps/
https://github.com/marketplace/actions/super-linter
https://docs.github.com/en/code-security/code-scanning
https://docs.github.com/en/code-security/code-scanning/introduction-to-code-scanning/about-code-scanning-with-codeql
https://github.com/marketplace/actions/official-sonarqube-scan
https://github.com/marketplace?type=actions
https://github.com/marketplace/actions/contributor-takes-action
https://github.com/open-sauced/app/blob/beta/.github/workflows/triage.yml
https://github.com/features/actions
https://docs.github.com/en/issues/planning-and-tracking-with-projects/learning-about-projects/about-projects

"Ready", "In progress", "In review", and "Done" columns. This will make it easy for you and your

team to track the progress of your project.

To create a new project:

Navigate to your GitHub profile and click the "Projects" tab.

Click the green "New project" button.

Choose a template.

Name your project and click the "Create project" button at the bottom.

Please read the GitHub documentation to learn more about adding items to your project.

May 19, 2025

1.

2.

3.

4.

NTCIP 8008 Projects

- 70/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

https://docs.github.com/en/issues/planning-and-tracking-with-projects/managing-items-in-your-project/adding-items-to-your-project

Section 6 WG Responsibilities

6.1 Overview

Each major stage of the open-source process is reviewed by a WG or committee to ensure a

base level of consensus. The specific group that is required to provide consensus and the level

of consensus required dependent upon the standardization path adopted for the project.

An NTCIP experimental specification can be approved at the NTCIP WG level for all stages

while an NTCIP standard requires Joint Committee approval for the project approval and

release approval.

The stages within the open-source process include:

project approval

issue prioritization

pull-request approval

release approval

6.2 Project Approval

An appropriate WG or committee shall approve the formation of a project prior to establishing

the SDO GitHub repository for the project.

The appropriate WG or committee should be identified in policies adopted by any SDO adopting

the ITS Open-Source Process.

A contributor can establish their own GitHub repository for the project before formal approval

to allow WG members to gain a better idea of what is being proposed.

Example

•

•

•

•

Note

NTCIP 8008 WG Responsibilities

- 71/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

NTCIP 8001 identifies the appropriate WG or committee for NTCIP open-source projects.

6.3 Issue Prioritization

A WG should oversee the prioritization of significant issues for each of its open-source projects.

A WG may provide guidance to its maintainer as to what constitutes a significant issue and how

various issues should be handled.

Many issues can be prioritized by the maintainer without involving the WG; however, when

major issues arise that affect the direction of the project, it is best to obtain direction from

the WG to ensure resoures are managed properly.

6.4 Pull-Request Approval

The WG responsible for the open-source project shall approve each pull request prior to its

merge into the SDO repository.

The WG responsible for the open-source project shall establish its policies on what constitutes a

pull-request approval.

A pull-request approval typically requires simple majority with no sustained objections.

NTCIP Guidance

Note

Note

NTCIP 8008 Issue Prioritization

- 72/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

This can be achieved by requiring a minimum number of approvals within GitHub among a

designated set of voting members.

6.5 Approve Releases

The WG responsible for the open-source project shall approve each version of a project prior to

it being tagged as a release.

The WG responsible for the open-source project shall establish its policies on what constitutes a

release approval.

A release approval can be as simple as WG consensus or can require a formal ballot

according to the processes adopted by the full committee.

May 19, 2025

GitHub Guidance

Example

NTCIP 8008 Approve Releases

- 73/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

Annex A Contributor Covenant Code of Conduct

Each entity that participates in the development of this repository as a commenter, contributor,

maintainer, or manager agrees to encourage a harassment-free environment and to act and

interact in ways that contribute to an open, welcoming, and healthy community.

A.1 Scope

This Code of Conduct applies within the scope of GitHub, and also applies when an individual is

officially representing the community in public forums.

A.2 Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the

community leaders responsible for enforcement at ntcip@nema.org.

A.3 Details

For additional guidelines on the application of this code, see the Contributor Covenant.

A.4 Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 2.1.

May 19, 2025

NTCIP 8008 Contributor Covenant Code of Conduct

- 74/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

mailto:ntcip@nema.org
https://www.contributor-covenant.org
https://www.contributor-covenant.org/version/2/1/code_of_conduct.html

Annex B Documentation Conventions

B.1 Exceptions Allowed

Unless otherwise stated in the project-specific CONTRIBUTIONS.md file, each project based on

this specification shall develop documentation as defined by this annex.

B.2 Development Environment

B.2.1 Overview

In addition to the development tools needed to manage and submit any contribution within the

Git environment (e.g., Git, GitHub), developing project documentation requires the following

tools:

A text editor, which is used to create and edit markdwon and yaml files,

Python, which is required to run MkDocs,

MkDocs, which is an open-source tool for translating a set of markdown files into a static website, and

Materials for MkDocs, which is an open-source tool that extends the markdown language to support additional features that are useful for

developing the look and feel of the project's documentation.

This combination of tools has been selected because it:

is designed to be easy to install and use,

requires minimal setup,

works well with Git and GitHub,

supports search functionality,

can produce a static website,

when coupled with add-ons, can produce PDFs

has an active development community

It is recommended to establish this development environment prior to making any edits.

Generating the documentation website locally from a known baseline allows the contributor to

verify that the development environment is working correctly prior to introducing edits to the

files. Contributors are required to generate the documentation locally to verify that their

proposed changes do not introduce any errors to the project. The MkDocs development

•

•

•

•

•

•

•

•

•

•

•

NTCIP 8008 Documentation Conventions

- 75/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

environemnt allows users to see their changes in real time so that any errors can be addressed

quickly.

B.2.2 Text Editor

Any text editor can be used to produce markdown and yaml files. These files are to have the

extensions of ".md" and ".yml", respectively.

Contributors are encouraged to use Visual Studio Code, which is an open-source editor, with the

following extensions enabled as it provides a reasonably close rendering of the final display

format:

Markdown Preview Enhanced by Yiyi Wang, this extension provides a markdown previewer with support for diagrams, math (LaTeX), mermaid,

charts, and more;

markdownlint by David Anson, this extension assists in ensuring markdown files follow consistent formatting rules; and

YAML by Red Hat, this extension provides syntax highlighting, validation, and autocomplete for YAML files.

While any text editor can be used, this suite of tools offers a free solution that is designed to

render the markdown in real-time while assisting the user in producing high quality code.

However, users should be aware that the toolset still does not attempt to render some of the

more advanced features of Materials for MkDocs. The final look and feel can be obtained using

the MkDocs server.

B.2.3 Python

MkDocs requires Python 3.8 or higher. You can check to see if Python is already installed and its

version with the following command:

python --version

The most recent version of Python can be installed from official Python website.

Once installed, you should verify by running both the python --version and pip --version

commands. PIP should be installed as a part of the Python package.

B.2.4 MkDocs

Running the MkDocs server locally allows the contributor to see proposed changes in real-time

and test them thoroughly prior to submitting pull requests. To install MkDocs, run

pip install mkdocs

•

•

•

NTCIP 8008 Text Editor

- 76/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

https://code.visualstudio.com
https://www.python.org/downloads/

Once installed, verify its installation with:

mkdocs --version

Once you have verified the installation, start the MkDocs server by changing to the directory

containing your cloned copy of the project repository and running

mkdocs serve

Once the server is running, you can direct a web browser to localhost port 8000 to see the

development version of the website. This site will be updated in realtime as you update files in

the repository. If you want to create a static site, However, to render all elements within the

project correctly, you will need to install Materials for MkDocs.

B.2.5 Materials for MkDocs

To install Materials for MkDocs and the commonly used extensions for ITS projects, run the

following command:

B.3 Working with the Content

The content of ITS open-source documentation is generally written in Markdown, a lightweight

and easy-to-use markup language that allows you to format text in a readable and visually

appealing way.

Please read the "Frequently Used Markdown" section for details about how to use it in this

project.

B.3.1 Default Document Structure

ITS open-source projects can cover a range of projects that have wildly different documentation

needs. Each project is allowed to define its own structure, but unless otherwise specified shall

use the structure defined in this document, which is intended for projects that result in a product

that can be conceptualized as a single traditional document (e.g., a traditional standard).

pip install mkdocs-material pymdown-extensions

NTCIP 8008 Materials for MkDocs

- 77/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

http://127.0.0.1:8000
https://www.markdownguide.org/

Each major portion of the document shall be defined in a separate markdown file. Major

portions are defined as:

the title page, which shall be index.md ;

each top-level section of the front matter (e.g., Foreword, Introduction);

each section in the body of the docuemnt; and

each annex.

The document structure shall be reflected in the project's mkdocs.yml file under the nav

section with all front matter located under a Front Matter heading.

When using the default configuration for ITS projects, this results in a left-hand left-hand

navigation bar that shows the major portions of the document while the right-hand navigation

shows the content of the currently opened section.

Be sure to follow naming conventions. Notice that file names are not capitalized, and there

are hyphens in place of spaces between words.

B.3.2 Structure of the Title Page File

The index.md file shall represent the title page of the document and shall:

Start with a line containing a hashtag and nothing else

Include code that suppresses unwanted markdownlint warnings

Identify the status of the document

Define the Document Identifier (e.g., NTCIP X8008)

Define the Document Title (e.g., ITS Open-Source Process)

Any other information required by the Standards Development Organization (SDO)

•

•

•

•

 - Front Matter:
 - Title Page: index.md
 - Notices: notices.md
 - Acknowledgements: acknowledgements.md
 - Foreword: foreword.md
 - Introduction: introduction.md
 - 1 General: general.md
 - 2 Overview: overview.md
 - 3 Commenter Responsibilities: commenter-responsibilities.md
 - 4 Contributor Responsibilities: contributor-responsibilities.md
 - 5 Maintainer Responsibilities: maintainer-responsibilities.md
 - 6 WG Responsibilities: wg-responsibilities.md
 - A Code of Conduct: code-of-conduct.md
 - B Documentation Conventions: documentation-conventions.md
 - C Coding Conventions: code-quality.md

Note

Note

•

•

•

•

•

•

NTCIP 8008 Structure of the Title Page File

- 78/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

B.3.3 Structure of All Other Front Matter Files

Each file representing a major portion of the front matter, other than the title page, shall include

a single level 1 heading that has the same title as defined in the nav section of the mkdocs.yml

file and is the first line of the document

B.3.4 Structure of a Section File

Each file representing a section of the main body of the document shall:

Start with code that sets the section counter for the body to the section number while suppressing unwanted markdownlint warnings

Include a single level 1 heading that has the same title as defined in the nav section of the mkdocs.yml file and occurs immediately after the

code defining the section number

End each heading with {.body}

Example of a Title Page File

#
<!-- markdownlint-disable MD033 -->
<div style="text-align: center; font-style: italic; font-weight: bold;">
 A proposal to the NTCIP Joint Committee</div>
<div style="text-align: center; font-size: 1.5em; font-weight: bold;">
 NTCIP X8008
</div>

<div style="text-align: center; font-size: 1.5em; font-weight: bold;">
 National Transportation Communications ITS Protocol
</div>
<div style="text-align: center; font-size: 2em; font-weight: bold;">
 ITS Open-Source Process
</div>
<!-- markdownlint-enable MD033 -->

Example of Start of a Front Matter File

Foreword

•

•

•

Example of Start of a Section File

<!-- markdownlint-disable MD033 -->
<!-- markdownlint-disable MD041 -->
<style>
 body { counter-set: section 3; }
</style>
<!-- markdownlint-enable MD033 -->
Documentation Conventions {.body}

NTCIP 8008 Structure of All Other Front Matter Files

- 79/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

Rule MD033 of markdownlint does issues a warning about the use of HTML within

markdown, but it is is necessary in this case to allow automated numbering to work properly.

Rule MD041 of markdownlint indicates that the first line in a file should be a top-level heading,

but our convention requires defining the section number first.

B.3.5 Structure of an Annex File

Each file representing an annex of the document shall:

Start with code that sets the section counter for the annex to the numberical order of the annex (the script will transofmr this into an alphabetic

letter)

Include a single level 1 heading that has the same title as defined in the nav section of the mkdocs.yml file and occurs immediately after the

code defining the section number

End each heading with {.annex}

B.3.6 Adding Definitions to the Glossary

If you add definitions to the project's glossary, ensure the definitions are added alphabetically.

B.3.7 Frequently Used Markdown

B.3.7.1 Headings

The hash (#) symbol at the start of a line denotes a heading (e.g., section, clause, subclause).

There are six levels of headings, and the number of hash symbols indicates the heading level.

The title of the heading should appear after the hash symbols and a space.

Note

•

•

•

Example of Start of an Annex File

<!-- markdownlint-disable MD033 -->
<!-- markdownlint-disable MD041 -->
<style>
 body { counter-set: section 1; }
</style>
<!-- markdownlint-enable MD033 -->
Example Annex {.annex}

NTCIP 8008 Structure of an Annex File

- 80/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

https://github.com/ite-org/NTCIP-8008/resources/glossary.md

Heading 3

Heading 4

B.3.8.2 Text Formatting

Make text bold by enclosing it with double asterisks (**).

Make text italic by enclosing it with single underscores (_).

Create inline code by wrapping text with backticks (`).

This is a bold text.

This is an italic text.

This is an inline code .

B.3.8.3 Lists

Create ordered lists using numbers followed by a period (1. , 2. , etc.).

Create unordered lists using hyphens (-).

The line before a list must be blank and a list cannot be immediately precedded by a different list

The style for the list is defined by the first list item

Example

Heading 3

Heading 4

•

•

•

Example

This is a bold text.

This is an italic text.

This is an`inline code`.

•

•

•

•

NTCIP 8008 Heading 3

- 81/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

Item 1

Item 2

New List

Unordered Item 1

Unordered Item 2

The numbering of numbered lists is automatic within markdown (i.e., when rendered, the list

items are numbered sequentially from 1 regardless of what numbers are contained within the

markdown file); however, it is good coding practice to maintain the correct numbering within

the markdown file to prevent any confusion among contributors.

B.3.8.4 Links

Create links using square brackets ([]) for the link text and parentheses (()) for the URL.

NTCIP

B.3.8.5 Images

Embed images using an exclamation mark (!), followed by square brackets ([]) for the alt

text, and parentheses (()) for the image URL. AN optional attribute field can be added to the

end to specify the size.

Example

1. Item 1
2. Item 2

New List

- Unordered Item 1
- Unordered Item 2

1.

2.

•

•

Note

Example

[NTCIP](https://ntcip.org)

NTCIP 8008 Heading 3

- 82/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

https://ntcip.org

B.3.8.6 Blockquotes

Create blockquotes using the greater-than symbol (>) or through Materials for MkDocs'

admonition quote (!!! quote).

This is a blockquote.

This is a Materials for MkDocs admonition quote.

B.3.8.7 Code Blocks

Create code blocks using triple backticks (```) for fenced code blocks and specify a language

next to the backticks before the fenced code block to highlight the syntax.

Example

![NTCIP](_assets/images/NTCIP.jpg){ width=200px }

Example

> This is a blockquote.

!!! quote
 This is a Materials for MkDocs admonition quote.

Quote

NTCIP 8008 Heading 3

- 83/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

B.3.8.8 Admonitions

Create callout out blocks for different purposes using the Materials for MkDocs admonistions

feature by including three explanation points and the admonition type with the contained text

indented by four spaces (!!! note)

This is a note.

This is a tip.

Example

```
bash git pull
```

Example

!!! note
 This is a note.

!!! tip
 This is a tip.

Note

Tip

NTCIP 8008 Heading 3

- 84/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

https://squidfunk.github.io/mkdocs-material/reference/admonitions/?h=adm#supported-types

Materials for MkDocs supports the following standard admonitions:

abstract

bug

danger

example

failure

info

note

question

quote

success

tip

warning

B.3.9 Markdown Tips

Preview your Markdown locally to ensure proper formatting before submitting your contribution.

Keep your Markdown content organized, and use headings to structure your sections.

There should be exactly one heading 1 within each file.

Use code blocks to highlight code snippets or configuration examples.

See the official Markdown Guide for more information about Markdown.

See the Materials for MkDocs Guide for more information about Materials for MkDocs.

May 19, 2025

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

NTCIP 8008 Markdown Tips

- 85/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

https://www.markdownguide.org/basic-syntax/
https://squidfunk.github.io/mkdocs-material/

Annex C Coding Conventions

C.1 Python Coding Conventions

Each contributor shall adhere to style guidelines defined in Python Enhancement Proposals

(PEP) 8 – Style Guide for Python Code.

Imports should be at the top of the file

Imports should be grouped into three sections with a blank line between each: (1) standard library imports, (2) thirdd party library imports, and (3)

local imports

Function and variable names should be in lowercase_with_underscores

Class names should be in UpperCamelCase

Constants should be in ALL_CAPS_WITH_UNDERSCORES

Do not use tabs; use four spaces for each indentation level

Limit lines to 79 characters; or 72 characters for long comments

Separate top-level functions and class definitions with two blank lines

Inside functions, use one blank line to separate significant logical sections

Each contributor should use a linter to automatically enforce the PEP 8 rules.

Pylince

May 19, 2025

Highlights of PEP 8

•

•

•

•

•

•

•

•

•

Example

NTCIP 8008 Coding Conventions

- 86/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

https://peps.python.org/pep-0008/
https://peps.python.org/pep-0008/

Annex D Examples for Material for MkDocs

Interactive features have limitations when the site is rendered as a PDF.

D.1 Call-out Blocks

D.1.1 Code blocks with syntax highlighting

Code blocks allow a user to define a block of text that is called out to appear as computer code

in a specified language. Material for MkDocs includes an extension to support a wide range of

syntax highlighters (i.e., to colorize keywords) and also allows custom-defined syntax

highlighters for user-defined languages. Code blocks start with three tick marks followed by a

space and then an indication of the syntax highlter to be used. The block of code is indented

with four spaces and the block ends with another three tick mark code.

D.1.2 Admonitions

Material for MkDocs supports creating call-out boxes for notes, examples, questions,

information, etc. It calls these boxes "admonitions". They are represented in a similar way to

Warning

C++ Example C++ Example Code ASN.1 Example ASN.1 Example Code

for(i = 0; i < max; i++) {
// sample loop code

}

    ``` c++
        for(i = 0; i < max; i++) {
            // sample loop code
        }
    ```

SEQUENCE OF {
item1 INTEGER (0..255),
item2 OCTET STRING

}

    ``` asn1
        SEQUENCE OF {
            item1 INTEGER (0..255),
            item2 OCTET STRING
        }
    ```

NTCIP 8008 Examples for Material for MkDocs

- 87/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

https://squidfunk.github.io/mkdocs-material/setup/extensions/python-markdown-extensions/?h=highligh#highlight

code blocks but start with three exclamation points (!) followed by a space and then the type of

admonition.

D.1.3 Collapsable

Material for MkDocs also allows call-out boxes to be collapsible by using question marks

instead of the exclamation points.

Material for MkDocs allows users to define their own admonition types as well.

The type of admonition defines the color and icon used in the banner of the box.

Note Example Code for Note Warning Example Code for Warning

Note

 !!! note
 Material for MkDocs allows users to define their own admonition types as well.

Warning

 !!! warning
 The type of admonition defines the color and icon used in the banner of the box.

Material for MkDocs allows users to define their own admonition types as well.

The type of admonition defines the color and icon used in the banner of the box.

Note Example Code for Note Warning Example Code for Warning

Note

 ??? note
 Material for MkDocs allows users to define their own admonition types as well.

Warning

 ??? warning
 The type of admonition defines the color and icon used in the banner of the box.

NTCIP 8008 Collapsable

- 88/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

When rendered to a PDF, a collapsable box is always shown expanded, but includes a

downward arrow (∨) in the title bar.

D.1.4 Content Tabs

As shown in these examples, boxes can also have multiple tabs. This is achieved by using three

equal signs (=).

Note

Example

This is an example using tabs.

The code tab only shows the first two tabs to avoid recursive code.

Tab 1 Tab 2 Code

Example

Note

=== "Tab 1"
 !!! example
 This is an example using tabs.

=== "Tab 2"
 !!! note
 The code tab only shows the first two tabs to avoid recursive code.

NTCIP 8008 Content Tabs

- 89/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

When rendered to a PDF, the tabs are shown across the top but the content of each tab is

displayed in order (with no real distinction between the content of each tab).

D.2 Annotations

If there is a preference to have comments appear by the user clicking and seeing a tooltip,

Material for MkDocs also supports annotations

When rendered to a PDF, the annotation is rendered largely as the markdown text, minus the

{ .annotate } line.

D.3 Footnotes

Footnotes are similar to annotations but place the additional information at the bottom of the

page rather than as a tooltip that appears.

Tip

Clicking on this (1) icon will show more text

More text

Sample annotation Code for annotation

1.

 Clicking on this (1) icon will show more text
 { .annotate }

1. More text

Warning

Clicking on the superscripts1 will jump to the footnote2

Sample footnote Code for annotation

 Clicking on this[^1] icon will show more text[^2]

 [^1]: Short note on one line
 [^2]:

Long footnotes must start on the following line and be indented by four
 spaces. Clicking on the icon at the end of the footnote will cause the
 display to jump back to the location of the footnote in the text.

NTCIP 8008 Annotations

- 90/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

When rendered to a PDF, the footnote is rendered at the end of the file (e.g., section) where

the footnote appears.

D.4 Abbreviations / Glossary

Tooltips can also be used to display term definitions or meanings of abbreviations (abbr). For

one-off usage, the file simply includes a line (typically at the end) the indicates the term in

square brackets preceded by an asterisk and followed by a colon space and the definition. The

line defining the term is not rendered, but the term being defined (e.g., abbr) will be underlined

whereever it occurs in the document and hovering over any instance of the term will reveal its

definition in a tooltip. By using the auto_append feature, all term definitions can be moved to a

separate file and applied to all pages within the project.

When rendered to a PDF, the information in the tooltip is not included in the document.

D.5 Paragraph attributes

The Attribute Lists extension allows to add HTML attributes and CSS classes to almost every

Markdown inline- and block-level element with a special syntax.

For example, this document marks all headings with the .annex class. This applies the annex

style from the extra.css file so that the heading is preceded with a section number that starts

with a letter.

Tip

Code for defining abbr mkdocs.yml

 *[abbr]: abbreviation

markdown_extensions:
- pymdownx.snippets:

auto_append:
- includes/abbreviations.md

Warning

NTCIP 8008 Abbreviations / Glossary

- 91/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

https://python-markdown.github.io/extensions/attr_list/
https://python-markdown.github.io/extensions/attr_list/#limitations

D.6 Sortable tables

Standard markdown supports tables; Material for MkDocs allows for extending this feature to

allow for sortable tables with some edits to the mkdocs.yml file and a javascript.

Example

D.5.1 My heading

Example heading Code for example

 ### My heading {.annex}

NTCIP 8008 My heading

- 92/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

D.7 Mermaid diagrams

Material for MkDocs supports Mermaid diagrams. Mermaid allows for relatively simple text-

based statements to define diagrams that follow well-defined rules, such as UML diagrams,

block diagrams, etc.

Sortable table mkdocs.yml docs/javascripts/tablesort.js Sortable table code

Group Title

WG 1 Architecture

WG 3 ITS geographic data

WG 5 Fee and toll collection

WG 7 General fleet management and commercial/freight

WG 8 Public transport/emergency

WG 9 Integrated transport information, management and control

WG 10 Traveller information systems

WG 14 Driving automation and active safety systems

WG 16 Communications

WG 17 Nomadic Devices in ITS Systems

WG 18 Cooperative systems

WG 19 Mobility integration

WG 20 Big Data and Artificial Intelligence supporting ITS

extra_javascript:
- <https://unpkg.com/tablesort@5.3.0/dist/tablesort.min.js>
- javascripts/tablesort.js

document$.subscribe(function() {
var tables = document.querySelectorAll("article table:not([class])")
tables.forEach(function(table) {

new Tablesort(table)
})

})

 |Group | Title |
 |:----:|:----------------------|
 |WG 1 | Architecture |
 |WG 3 | ITS geographic data |
 |WG 5 | Fee and toll collection |
 |WG 7 | General fleet management and commercial/freight|
 |WG 8 | Public transport/emergency |
 |WG 9|Integrated transport information, management and control|
 |WG 10|Traveller information systems|
 |WG 14 | Driving automation and active safety systems|
 |WG 16 | Communications |
 |WG 17 | Nomadic Devices in ITS Systems |
 |WG 18 | Cooperative systems |
 |WG 19 | Mobility integration |
 |WG 20 | Big Data and Artificial Intelligence supporting ITS |

NTCIP 8008 Mermaid diagrams

- 93/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

D.8 Additional features

D.9 Search

The search feature adds a search field into the page header. Include by including the following in

your mkdocs.yml file.

Example

Sequence diagram Sequence diagram code

%%{init: { 'sequence': { 'mirrorActors': false } }}%%
sequenceDiagram
 participant Proposer
 participant Committee
 participant WG as Working Group
 participant Maintainer
 participant Repo as Open-Source Project Repository

 Proposer ->> Committee: Propose project
 Committee ->> WG: Establish WG
 Committee ->> Maintainer: Assign maintainer
 Maintainer ->> Repo: Establish public repository
 Maintainer ->> Repo: Upload initial baseline
 Maintainer ->> WG: Suggest project plan
 WG -->> Maintainer: feedback
 Maintainer ->> Repo: Post project plan
 Maintainer ->> Repo: Create appropriate branches for work

    ```mermaid
    %%{init: { 'sequence': { 'mirrorActors': false } }}%%
    sequenceDiagram
      participant Proposer
      participant Committee
      participant WG as Working Group
      participant Maintainer
      participant Repo as Open-Source Project Repository

      Proposer ->> Committee: Propose project
      Committee ->> WG: Establish WG
      Committee ->> Maintainer: Assign maintainer
      Maintainer ->> Repo: Establish public repository
      Maintainer ->> Repo: Upload initial baseline
      Maintainer ->> WG: Suggest project plan
      WG -->> Maintainer: feedback
      Maintainer ->> Repo: Post project plan
      Maintainer ->> Repo: Create appropriate branches for work
    ```

NTCIP 8008 Additional features

- 94/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

D.10 Comment System

Material for MkDocs allows to easily add the third-party comment system of your choice to the

footer of any page by using theme extension.

D.11 Fields for information from GitHub

When using the mkdocs-git-revision-date-localized plugin, users can show the release

number on the index page using the field {{ release_number }} .

D.11.1 Version history

Material for MkDocs has a powerful versioning system that allows a site to maintain a history of

all released versions of a document.

D.11.2 Last edit date for each page

The mkdocs-git-revision-date-localized-plugin for Material for MkDocs. An example of

this appears at the bottom of this page and is enabled by ensuring the git-revision-date-localized

feature is listed in the plugins section of your mkdocs.yml file.

Short note on one line

Long footnotes must start on the following line and be indented by four spaces. Clicking on
the icon at the end of the footnote will cause the display to jump back to the location of the
footnote in the text.

May 19, 2025

plugins:
- search

1.

2.

NTCIP 8008 Comment System

- 95/95 - CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/)

https://squidfunk.github.io/mkdocs-material/setup/adding-a-comment-system/?h=comment
https://squidfunk.github.io/mkdocs-material/setup/setting-up-versioning/
https://squidfunk.github.io/mkdocs-material/setup/setting-up-versioning/

	ITS Open Source Process
	Front Matter
	Notices
	Copyright
	Content and Liability Disclaimer
	Trademark Notice

	Acknowledgements
	Foreword
	Overview
	Approvals
	User Comment Instructions
	History

	Introduction

	General
	Scope
	References
	Normative References
	Other References
	Other Resources for Contributors
	Other Resources for Maintainers

	General Statements
	Glossary

	Overview
	Establishing the Project
	Process comments
	Procss Contributions
	Approve Releases

	Commenter Responsibilities
	Overview
	General
	Discussions
	Issues

	Submitting a Comment
	Read the README file
	Respect the CODE_OF_CONDUCT
	Use discussions if no change is proposed
	Use issues to propose changes
	Comply with templates

	Contributor Responsibilities
	Overview
	Prerequisites
	Join the relevant working group
	Install Software
	Git
	Graphical User Interface
	Development Environment

	Establish an Account on the Repository Hosting Platform
	Fork the repository
	Clone the repository
	Claim an Issue
	Create a Branch
	Make Edits
	Pull and Merge Updates
	Test the Updates
	Commit the Update
	Push the Update to Contributor's Online Repository
	Make Pull Request
	Cooperate with Reviewers

	What Happens Next?
	Keeping Branches Up to Date
	Merge Conflicts
	Tips to Prevent Resolving Merge Conflicts Repeatedly
	1. Following Instructions
	2. Pull Request Form
	3. Resolving Merge Conflicts Immediately

	Merge Conflicts in the Guestbook Repository
	Resolving Merge Conflicts

	Setup
	Install Git
	Create a GitHub account
	Fork the Desired Repository
	Install GitKraken
	Clone Repository

	Maintainer Responsibilities
	Overview
	Establish Repository
	Configure Project Settings
	Issues and Discussions
	Pages
	Dependabot

	Set Up Project Files
	Overview
	Readme.md File
	Installation Guidance
	Code of Conduct File
	Contributing File
	License File
	Security file
	Code Owners File
	Issue Templates
	Pull Request Templates
	Saved Replies
	Gitignore File
	Mkdocs.yml File
	Deploy.yml File
	Index File
	Extra.css File
	Main.html File
	Nav.html File
	Toc.html File

	Define Project Structure
	Issue Triage
	Overview
	Triage Pre-Assessment
	Overview
	Dealing with Spam
	Insufficient Information Issues
	Stale Issues
	Ensuring Proper categorization

	Triaging Bugs
	Triaging Feature Requests
	Triaging Duplicate Issues
	Triaging Rejected Issues

	Reviewing Pull Requests
	Overview
	Pull-Request Pre-Assessment
	Spam Pull Requests
	Low-Quality Pull Requests
	Stale Pull Requests

	Testing
	Overview
	Automated Testing
	Failing Automated Tests
	Code Reviews
	Manual Testing

	Effective Feedback
	Missing Tests

	Creating a Release
	Building a Community
	Overview
	Promptly Respond and Address Concerns

	Advanced Features
	Overview
	Linter
	Code Scanning Tools
	Creating and Customizing Actions
	Projects

	WG Responsibilities
	Overview
	Project Approval
	Issue Prioritization
	Pull-Request Approval
	Approve Releases

	Contributor Covenant Code of Conduct
	Scope
	Enforcement
	Details
	Attribution

	Documentation Conventions
	Exceptions Allowed
	Development Environment
	Overview
	Text Editor
	Python
	MkDocs
	Materials for MkDocs

	Working with the Content
	Default Document Structure
	Structure of the Title Page File
	Structure of All Other Front Matter Files
	Structure of a Section File
	Structure of an Annex File
	Adding Definitions to the Glossary
	Frequently Used Markdown
	Headings

	Heading 3
	Heading 4
	Text Formatting
	Lists
	Links
	Images
	Blockquotes
	Code Blocks
	Admonitions

	Markdown Tips

	Coding Conventions
	Python Coding Conventions

	Examples for Material for MkDocs
	Call-out Blocks
	Code blocks with syntax highlighting
	Admonitions
	Collapsable
	Content Tabs

	Annotations
	Footnotes
	Abbreviations / Glossary
	Paragraph attributes
	My heading

	Sortable tables
	Mermaid diagrams
	Additional features
	Search
	Comment System
	Fields for information from GitHub
	Version history
	Last edit date for each page

